scholarly journals Role of Transcription Factor CaNdt80p in Cell Separation, Hyphal Growth, and Virulence in Candida albicans

2010 ◽  
Vol 9 (4) ◽  
pp. 634-644 ◽  
Author(s):  
Adnane Sellam ◽  
Christopher Askew ◽  
Elias Epp ◽  
Faiza Tebbji ◽  
Alaka Mullick ◽  
...  

ABSTRACT The NDT80/PhoG transcription factor family includes ScNdt80p, a key modulator of the progression of meiotic division in Saccharomyces cerevisiae. In Candida albicans, a member of this family, CaNdt80p, modulates azole sensitivity by controlling the expression of ergosterol biosynthesis genes. We previously demonstrated that CaNdt80p promoter targets, in addition to ERG genes, were significantly enriched in genes related to hyphal growth. Here, we report that CaNdt80p is indeed required for hyphal growth in response to different filament-inducing cues and for the proper expression of genes characterizing the filamentous transcriptional program. These include noteworthy genes encoding cell wall components, such as HWP1, ECE1, RBT4, and ALS3. We also show that CaNdt80p is essential for the completion of cell separation through the direct transcriptional regulation of genes encoding the chitinase Cht3p and the cell wall glucosidase Sun41p. Consistent with their hyphal defect, ndt80 mutants are avirulent in a mouse model of systemic candidiasis. Interestingly, based on functional-domain organization, CaNdt80p seems to be a unique regulator characterizing fungi from the CTG clade within the subphylum Saccharomycotina. Therefore, this study revealed a new role of the novel member of the fungal NDT80 transcription factor family as a regulator of cell separation, hyphal growth, and virulence.

Author(s):  
Raha Parvizi Omran ◽  
Chris Law ◽  
Vanessa Dumeaux ◽  
Joachim Morschhäuser ◽  
Malcolm Whiteway

AbstractZinc cluster transcription factors are essential fungal specific regulators of gene expression. In the dimorphic pathogen Candida albicans, they control processes ranging from metabolism and stress adaptation to mating, virulence, and antifungal resistance. Here, we have identified the gene CaORF19.1604 as encoding a zinc cluster transcription factor that acts as a regulator of filament development. Hyperactivation of CaORF19.1604, which we have named RHA1 for Regulator of Hyphal Activity, leads to a wrinkled colony morphology under non-hyphal growth conditions, to pseudohyphal growth and filament formation, to invasiveness and enhanced biofilm formation.  Cells with activated Rha1 are sensitive to cell wall modifying agents such as Congo red and the echinocandin drug caspofungin but show normal sensitivity to fluconazole. RNA-sequencing-based transcriptional profiling of the activated Rha1 strain reveals the up-regulation of genes for core filamentation and cell-wall-adhesion-related proteins such as Als1, Als3, Ece1, and Hwp1. Upregulation is also seen for the genes for the hyphal-inducing transcription factors Brg1 and Ume6 and genes encoding several enzymes involved in arginine metabolism, while downregulation is seen for the hyphal repressor Nrg1. The deletion of BRG1 blocks the filamentation caused by activated Rha1, while null mutants of UME6 result in a partial block. Deletion of RHA1 can partially reduce healthy hyphal development triggered by environmental conditions such as Spider medium or serum at 37°C.In contrast to the limited effect of either single mutant, the double rha1 ume6 deletion strain is totally defective in both serum and Spider medium stimulated hyphal development. While the loss of Brg1 function blocks serum-stimulated hyphal development, this block can be significantly bypassed by Rha1 hyperactivity, and the combination of Rha1 hyperactivity and serum addition can generate significant polarization in even brg1 ume6 double mutants. Our results thus suggest that in response to external signals, Rha1 functions to facilitate the switch from an Nrg1 controlled yeast state to a Brg1/Ume6 regulated hyphal state.Author SummaryCandida albicans is the predominant human fungal pathogen, generating a mortality rate of 40% in systemically infected patients. The ability of Candida albicans to change its morphology is a determinant of its tissue penetration and invasion in response to variant host-related stimuli. The regulatory mechanism for filamentation includes a complex network of transcription factors that play roles in regulating hyphae associated genes. We identify here a new regulator of filamentation from the zinc cluster transcription factor family. We present evidence suggesting that this transcription factor assists the Nrg1/Brg1 switch regulating hyphal development.


2013 ◽  
Vol 13 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Frans M. Klis ◽  
Chris G. de Koster ◽  
Stanley Brul

ABSTRACTBionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeastSaccharomyces cerevisiaeand the polymorphic, pathogenic fungusCandida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation ofin vivovalues. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allowsC. albicansto cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.


2015 ◽  
Vol 14 (12) ◽  
pp. 1165-1172 ◽  
Author(s):  
Frans M. Klis ◽  
Stanley Brul

ABSTRACTThe wall proteome and the secretome of the fungal pathogenCandida albicanshelp it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here, we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently found in large amounts in culture supernatants, suggesting that they are needed for construction and expansion of the cell wall β-1,3-glucan layer and thus correlate with growth and might serve as diagnostic biomarkers. The genesENG1,CHT3, andSCW11, which encode an endoglucanase, the major chitinase, and a β-1,3-glucan-modifying enzyme, respectively, are periodically expressed and peak in M/G1. The corresponding protein abundances in the medium correlate with the degree of cell separation during single-yeast-cell, pseudohyphal, and hyphal growth. We also discuss the observation that cells treated with fluconazole, or other agents causing cell surface stress, form pseudohyphal aggregates. Fluconazole-treated cells secrete abundant amounts of the transglucosylase Phr1, which is involved in the accumulation of β-1,3-glucan in biofilms, raising the question whether this is a general response to cell surface stress. Other abundant secretome proteins also contribute to biofilm formation, emphasizing the important role of secretome proteins in this mode of growth. Finally, we discuss the relevance of these observations to therapeutic intervention. Together, these data illustrate thatC. albicansactively adapts its secretome to environmental conditions, thus promoting its survival in widely divergent niches of the human body.


2013 ◽  
Vol 12 (4) ◽  
pp. 604-613 ◽  
Author(s):  
Florian Hennicke ◽  
Maria Grumbt ◽  
Ulrich Lermann ◽  
Nico Ueberschaar ◽  
Katja Palige ◽  
...  

ABSTRACTThe amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeastCandida albicansexcretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine inC. albicansrelies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of theCDG1gene inC. albicans, but also the expression ofSSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion ofSSU1resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened aC. albicanslibrary of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducibleSSU1andCDG1gene expression.cdg1Δ andssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity ofC. albicans. Moreover,cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production byC. albicanssuggests diverse roles during host adaptation and pathogenicity.


2012 ◽  
Vol 11 (10) ◽  
pp. 1219-1225 ◽  
Author(s):  
Allia K. Lindsay ◽  
Aurélie Deveau ◽  
Amy E. Piispanen ◽  
Deborah A. Hogan

ABSTRACTCandida albicans, a fungal pathogen of humans, regulates its morphology in response to many environmental cues and this morphological plasticity contributes to virulence. Farnesol, an autoregulatory molecule produced byC. albicans, inhibits the induction of hyphal growth by inhibiting adenylate cyclase (Cyr1). The role of farnesol and Cyr1 in controlling the maintenance of hyphal growth has been less clear. Here, we demonstrate that preformed hyphae transition to growth as yeast in response to farnesol and that strains with increased cyclic AMP (cAMP) signaling exhibit more resistance to farnesol. Exogenous farnesol did not induce the hypha-to-yeast transition in mutants lacking the Tup1 or Nrg1 transcriptional repressors in embedded conditions. Although body temperature is not required for embedded hyphal growth, we found that the effect of farnesol on the hypha-to-yeast transition varies inversely with temperature. Our model of Cyr1 activity being required for filamentation is also supported by our liquid assay data, which show increased yeast formation when preformed filaments are treated with farnesol. Together, these data suggest that farnesol can modulate morphology in preformed hyphal cells and that the repression of hyphal growth maintenance likely occurs through the inhibition of cAMP signaling.


2012 ◽  
Vol 11 (8) ◽  
pp. 966-977 ◽  
Author(s):  
Jarrod R. Fortwendel ◽  
Praveen R. Juvvadi ◽  
Luise E. Rogg ◽  
Yohannes G. Asfaw ◽  
Kimberlie A. Burns ◽  
...  

ABSTRACT Ras is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown. Here we demonstrate that Aspergillus fumigatus RasA localizes primarily to the plasma membrane of actively growing hyphae. We show that treatment with the palmitoylation inhibitor 2-bromopalmitate disrupts normal RasA plasma membrane association and decreases hyphal growth. Targeted mutations of the highly conserved RasA palmitoylation motif also mislocalized RasA from the plasma membrane and led to severe hyphal abnormalities, cell wall structural changes, and reduced virulence in murine invasive aspergillosis. Finally, we provide evidence that proper RasA localization is independent of the Ras palmitoyltransferase homolog, encoded by erfB , but requires the palmitoyltransferase complex subunit, encoded by erfD . Our results demonstrate that plasma membrane-associated RasA is critical for polarized morphogenesis, cell wall stability, and virulence in A. fumigatus .


mSphere ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Tao Shu ◽  
Xin-Yu He ◽  
Jia-Wen Chen ◽  
Yi-Sheng Mao ◽  
Xiang-Dong Gao

ABSTRACT Environmental pH influences cell growth and differentiation. In the dimorphic yeast Yarrowia lipolytica, neutral-alkaline pH strongly induces the yeast-to-filament transition. However, the regulatory mechanism that governs alkaline pH-induced filamentation has been unclear. Here, we show that the pH-responsive transcription factor Y. lipolytica Rim101 (YlRim101) is a major regulator of alkaline-induced filamentation, since the deletion of YlRIM101 severely impaired filamentation at alkaline pH, whereas the constitutively active YlRIM1011-330 mutant mildly induced filamentation at acidic pH. YlRim101 controls the expression of the majority of alkaline-regulated cell wall protein genes. One of these, the cell surface glycosidase gene YlPHR1, plays a critical role in growth, cell wall function, and filamentation at alkaline pH. This finding suggests that YlRim101 promotes filamentation at alkaline pH via controlling the expression of these genes. We also show that, in addition to YlRim101, the Msn2/Msn4-like transcription factor Mhy1 is highly upregulated at alkaline pH and is essential for filamentation. However, unlike YlRim101, which specifically regulates alkaline-induced filamentation, Mhy1 regulates both alkaline- and glucose-induced filamentation, since the deletion of MHY1 abolished them both, whereas the overexpression of MHY1 induced strong filamentation irrespective of the pH or the presence of glucose. Finally, we show that YlRim101 and Mhy1 positively coregulate seven cell wall protein genes at alkaline pH, including YlPHR1 and five cell surface adhesin-like genes, three of which appear to promote filamentation. Together, these results reveal a conserved role of YlRim101 and a novel role of Mhy1 in the regulation of alkaline-induced filamentation in Y. lipolytica. IMPORTANCE The regulatory mechanism that governs pH-regulated filamentation is not clear in dimorphic fungi except in Candida albicans. Here, we investigated the regulation of alkaline pH-induced filamentation in Yarrowia lipolytica, a dimorphic yeast distantly related to C. albicans. Our results show that the transcription factor YlRim101 and the Msn2/Msn4-like transcription factor Mhy1 are the major regulators that promote filamentation at alkaline pH. They control the expression of a number of cell wall protein genes important for cell wall organization and filamentation. Our results suggest that the Rim101/PacC homologs play a conserved role in pH-regulated filamentation in dimorphic fungi.


mSphere ◽  
2016 ◽  
Vol 1 (6) ◽  
Author(s):  
Jeffrey M. Hollomon ◽  
Nora Grahl ◽  
Sven D. Willger ◽  
Katja Koeppen ◽  
Deborah A. Hogan

ABSTRACT Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways. Candida albicans behaviors are affected by pH, an important environmental variable. Filamentous growth is a pH-responsive behavior, where alkaline conditions favor hyphal growth and acid conditions favor growth as yeast. We employed filamentous growth as a tool to study the impact of pH on the hyphal growth regulator Cyr1, and we report that downregulation of cyclic AMP (cAMP) signaling by acidic pH contributes to the inhibition of hyphal growth in minimal medium with GlcNAc. Ras1 and Cyr1 are generally required for efficient hyphal growth, and the effects of low pH on Ras1 proteolysis and GTP binding are consistent with diminished cAMP output. Active alleles of ras1 do not suppress the hyphal growth defect at low pH, while dibutyryl cAMP partially rescues filamentous growth at low pH in a cyr1 mutant. These observations are consistent with Ras1-independent downregulation of Cyr1 by low pH. We also report that extracellular pH leads to rapid and prolonged decreases in intracellular pH, and these changes may contribute to reduced cAMP signaling by reducing intracellular bicarbonate pools. Transcriptomics analyses found that the loss of Cyr1 at either acidic or neutral pH leads to increases in transcripts involved in carbohydrate catabolism and protein translation and glycosylation and decreases in transcripts involved in oxidative metabolism, fluconazole transport, metal transport, and biofilm formation. Other pathways were modulated in pH-dependent ways. Our findings indicate that cAMP has a global role in pH-dependent responses, and this effect is mediated, at least in part, through Cyr1 in a Ras1-independent fashion. IMPORTANCE Candida albicans is a human commensal and the causative agent of candidiasis, a potentially invasive and life-threatening infection. C. albicans experiences wide changes in pH during both benign commensalism (a common condition) and pathogenesis, and its morphology changes in response to this stimulus. Neutral pH is considered an activator of hyphal growth through Rim101, but the effect of low pH on other morphology-related pathways has not been extensively studied. We sought to determine the role of cyclic AMP signaling, a central regulator of morphology, in the sensing of pH. In addition, we asked broadly what cellular processes were altered by pH in both the presence and absence of this important signal integration system. We concluded that cAMP signaling is impacted by pH and that cAMP broadly impacts C. albicans physiology in both pH-dependent and -independent ways.


2012 ◽  
Vol 12 (2) ◽  
pp. 254-264 ◽  
Author(s):  
Clemens J. Heilmann ◽  
Alice G. Sorgo ◽  
Sepehr Mohammadi ◽  
Grazyna J. Sosinska ◽  
Chris G. de Koster ◽  
...  

ABSTRACTThe human fungal pathogenCandida albicanscan grow at temperatures of up to 45°C. Here, we show that at 42°C substantially less biomass was formed than at 37°C. The cells also became more sensitive to wall-perturbing compounds, and the wall chitin levels increased, changes that are indicative of wall stress. Quantitative mass spectrometry of the wall proteome using15N metabolically labeled wall proteins as internal standards revealed that at 42°C the levels of the β-glucan transglycosylases Phr1 and Phr2, the predicted chitin transglycosylases Crh11 and Utr2, and the wall maintenance protein Ecm33 increased. Consistent with our previous results for fluconazole stress, this suggests that a wall-remodeling response is mounted to relieve wall stress. Thermal stress as well as different wall and membrane stressors led to an increased phosphorylation of the mitogen-activated protein (MAP) kinase Mkc1, suggesting activation of the cell wall integrity (CWI) pathway. Furthermore, all wall and membrane stresses tested resulted in diminished cell separation. This was accompanied by decreased secretion of the major chitinase Cht3 and the endoglucanase Eng1 into the medium. Consistent with this,cht3cells showed a similar phenotype. When treated with exogenous chitinase, cell clusters both from stressed cells and mutant strains were dispersed, underlining the importance of Cht3 for cell separation. We propose that surface stresses lead to a conserved cell wall remodeling response that is mainly governed by Mkc1 and is characterized by chitin reinforcement of the wall and the expression of remedial wall remodeling enzymes.


2010 ◽  
Vol 9 (9) ◽  
pp. 1363-1373 ◽  
Author(s):  
Ian A. Cleary ◽  
Priyadarshini Mulabagal ◽  
Sara M. Reinhard ◽  
Nishant P. Yadev ◽  
Craig Murdoch ◽  
...  

ABSTRACT The opportunistic human fungal pathogen Candida albicans is a major cause of nosocomial infections. One of the fundamental features of C. albicans pathogenesis is the yeast-to-hypha transition. Hypha formation is controlled positively by transcription factors such as Efg1p and Cph1p, which are required for hyphal growth, and negatively by Tup1p, Rfg1p, and Nrg1p. Previous work by our group has shown that modulating NRG1 gene expression, hence altering morphology, is intimately linked to the capacity of C. albicans to cause disease. To further dissect these virulence mechanisms, we employed the same strategy to analyze the role of Rfg1p in filamentation and virulence. Studies using a tet-RFG1 strain revealed that RFG1 overexpression does not inhibit hypha formation in vitro or in the mouse model of hematogenously disseminated candidiasis. Interestingly, RFG1 overexpression drives formation of pseudohyphae under yeast growth conditions—a phenotype similar to that of C. albicans strains with mutations in one of several mitotic regulatory genes. Complementation assays and real-time PCR analysis indicate that, although the morphology of the tet-RFG1 strain resembles that of the mitotic regulator mutants, Rfg1p overexpression does not impact expression of these genes.


Sign in / Sign up

Export Citation Format

Share Document