scholarly journals An ste20 Homologue in Ustilago maydis Plays a Role in Mating and Pathogenicity

2004 ◽  
Vol 3 (1) ◽  
pp. 180-189 ◽  
Author(s):  
David G. Smith ◽  
Maria D. Garcia-Pedrajas ◽  
Wei Hong ◽  
Zhanyang Yu ◽  
Scott E. Gold ◽  
...  

ABSTRACT The mitogen-activated protein kinase (MAPK) pathways are conserved from fungi to humans and have been shown to play important roles in mating and filamentous growth for both Saccharomyces cerevisiae and dimorphic fungi and in infectivity for pathogenic fungi. STE20 encodes a protein kinase of the p21-activated protein kinase family that regulates more than one of these cascades in yeasts. We hypothesized that an Ste20p homologue would play a similar role in the dimorphic plant pathogen Ustilago maydis. The full-length copy of the U. maydis gene was obtained from a genomic library; it lacked introns and was predicted to encode a protein of 826 amino acids, whose sequence confirmed its identity as the first Ste20p homologue to be isolated from a plant pathogen. The predicted protein contained both an N-terminal regulatory Cdc42-Rac interactive binding domain and a C-terminal catalytic kinase domain. Disruption of the gene smu1 resulted in a delayed mating response in a mating-type-specific manner and also in a severe reduction in disease production on maize. Unlike the Ustilago bypass of cyclase (ubc) mutations previously identified in genes in the pheromone-responsive MAPK cascade, mutation of smu1 does not by itself act as an extragenic suppressor of the filamentous phenotype of a uac1 mutant. Thus, the direct connection of Smu1p to MAPK cascade function has yet to be established. Even so, Smu1, though not absolutely required for mating, is necessary for wild-type mating and pathogenicity.

2020 ◽  
Author(s):  
Chuang Jin ◽  
Rong Liao ◽  
Jing Zheng ◽  
Yan Fang ◽  
Wenming Wang ◽  
...  

MAPKKK is the largest family of mitogen-activated protein kinase (MAPK) cascade, which is known to play important roles in plant pathogen interaction by regulating fungal cell proliferation, growth and pathogenicity. So far, only a few of them have been characterized due to the functional redundancy of MAPKKKs. In this study, it is interesting that PbMAPKKK7, a MAPKKK from Plasmodiophora brassicae, was clustered into the A3 subgroup of plant MAPKKKs by a phylogenetic analysis and BCK1 and STE group of fungal MAPKKKs. The function of PbMAPKKK7 in accumulation of reactive oxygen species (ROS) and cell death in Nicotiana benthamiana were characterized. Agroinfiltrated with PbMAPKKK7 mutated protein kinase domain relieved the symptoms. Interestingly, the induction of cell death was dependent on the light intensity. Transcriptional profiling analysis demonstrated that PbMAPKKK7 highly expressed during the cortex infection stages, indicating its important role in P. brassicae infection. These functional analyses of PbMAPKKK7 would build our knowledge of new roles of the MAPK cascade pathway in N. benthamiana and P. brassicae interactions.


2002 ◽  
Vol 22 (12) ◽  
pp. 3981-3993 ◽  
Author(s):  
Xuewen Pan ◽  
Joseph Heitman

ABSTRACT The yeast Saccharomyces cerevisiae undergoes a dimorphic filamentous transition in response to nutrient cues that is affected by both mitogen-activated protein kinase and cyclic AMP-protein kinase A signaling cascades. Here two transcriptional regulators, Flo8 and Sfl1, are shown to be the direct molecular targets of protein kinase A. Flo8 and Sfl1 antagonistically control expression of the cell adhesin Flo11 via a common promoter element. Phosphorylation by the protein kinase A catalytic subunit Tpk2 promotes Flo8 binding and activation of the Flo11 promoter and relieves repression by prohibiting dimerization and DNA binding by Sfl1. Our studies illustrate in molecular detail how protein kinase A combinatorially effects a key developmental switch. Similar mechanisms may operate in pathogenic fungi and more complex multicellular eukaryotic organisms.


1994 ◽  
Vol 267 (4) ◽  
pp. C1130-C1135 ◽  
Author(s):  
Y. Wang ◽  
P. M. Rose ◽  
M. L. Webb ◽  
M. J. Dunn

Endothelin (ET) has been shown to activate mitogen-activated protein kinase (MAPK). However, it has been unclear which of the ET receptors is coupled to MAPK activation. In the present study, we conducted experiments to determine which ET receptor is linked to MAPK activation. We found that both human ETA and ETB were coupled to the MAPK cascade in ETA or ETB cDNA-transfected Chinese hamster ovary cells. ET-1 was more potent than ET-3 in the activation of p42 MAPK, induction of MAPK kinase (MAPKK) gel retardation and uptake of [3H]thymidine in ETA-transfected cells, whereas sarafotoxin (S6c) showed no stimulatory effect on the kinases and [3H]thymidine uptake. ET-1, ET-3, and S6c had approximately the same potency to activate p42 MAPK, MAPKK gel retardation, and [3H]thymidine uptake in ETB-transfected cells. These data suggest that 1) ET isopeptides, through either ETA or ETB receptors, induce the MAPK cascade as well as cell proliferation; and 2) the different potencies of ET isopeptides for activation of the MAPK cascade and induction of cell growth are mainly due to their different affinities toward ETA and ETB.


2019 ◽  
Author(s):  
ZhiGuo Liu ◽  
Lixin Wang ◽  
Chaoling Xue ◽  
Yuetong Chu ◽  
Weilin Gao ◽  
...  

Abstract Backgrounds Mitogen activated protein kinase (MAPK) cascades play vital roles in signal transduction in response to various biotic and abiotic stresses. In the previous study we have identified 10 ZjMAPKs and 5 ZjMAPKKs in Chinese jujube genome and found some crucial members of ZjMAPKs and ZjMAPKKs might function importantly in the process of phytoplasma infection. But how these ZjMAPKKs were modulated by ZjMAPKKKs during this process is still elusive and little information is known about the MAPKKKs in Chinese jujube. Results In the current study, 56 ZjMAPKKKs were identified in the jujube genome and all of them contain the key S-TKc (serine/threonine protein kinase) domain which distributed in all 12 chromosomes. Phylogenetic analysis showed that these ZjMAPKKKs could be classified into two subfamilies, of which 41 belonged to Raf, and 15 to MEKK subfamily. In addition, the ZjMAPKKKs in each subfamily share the same conserved motifs and gene structures, one pair of ZjMAPKKKs (15/16) was the only tandem duplication event on Chromosome 5. Furthermore, the expression profiles of these MAPKKKs in response to phytoplasma disease were investigated by qPCR. In the three main infected tissues (witches’ broom leaves, phyllody leaves, apparent normal leaves), the ZjMAPKKK26 and 45 were significantly up regulated and the ZjMAPKKK3, 43 and 50 were down regulated. While the ZjMAPKKK4, 10, 25 and 44 were significant highly induced in the sterile cultivated tissues infected by phytoplasma, and the ZjMAPKKK7, 30, 35, 37, 40, 41, 43 and 46 were significantly down regulated. Conclusions The identification and classification analysis of ZjMAPKKKs was firstly reported and some key individual ZjMAPKKKs genes might play essential roles in response to phytoplasma infection. This could provide initial understanding for the mechanism that how the ZjMAPKKKs were involved in jujube - phytoplasma infection.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Archita Chatterjee ◽  
Abhirup Paul ◽  
G. Meher Unnati ◽  
Ruchika Rajput ◽  
Trisha Biswas ◽  
...  

Abstract Background Mitogen Activated Protein Kinase (MAPK) cascade is a fundamental pathway in organisms for signal transduction. Though it is well characterized in various plants, there is no systematic study of this cascade in tea. Result In this study, 5 genes of Mitogen Activated Protein Kinase Kinase (MKK) and 16 genes of Mitogen Activated Protein Kinase (MPK) in Camellia sinensis were found through a genome-wide search taking Arabidopsis thaliana as the reference genome. Also, phylogenetic relationships along with structural analysis which includes gene structure, location as well as protein conserved motifs and domains, were systematically examined and further, predictions were validated by the results. The plant species taken for comparative study clearly displayed segmental duplication, which was a significant candidate for MAPK cascade expansion. Also, functional interaction was carried out in C. sinensis based on the orthologous genes in Arabidopsis. The expression profiles linked to various stress treatments revealed wide involvement of MAPK and MAPKK genes from Tea in response to various abiotic factors. In addition, the expression of these genes was analysed in various tissues. Conclusion This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the MAPK cascade regulatory network in C. sinensis.


2000 ◽  
Vol 12 (4) ◽  
pp. 209 ◽  
Author(s):  
Naoki Iwamori ◽  
Kunihiko Naito ◽  
Koji Sugiura ◽  
Hideyuki Kagii ◽  
Masakane Yamashita ◽  
...  

The mitogen-activated protein kinase (MAPK) cascade is one of the most important signal transduction pathways that regulate the cell cycle in somatic cells. The present study examined the phosphorylation states of components in the MAPK cascade, Raf-1, MEK-1, and extracellular signal regulated kinases (ERKs), which are activated by mitogens, throughout early mouse embryo development and in cultured somatic cells generally. In somatic cells, Raf-1 and MEK-1 were phosphorylated at M-phase and dephosphorylated during interphase. ERKs were not phosphorylated at any stage during the cell cycle. These results were similar to previous findings for the first and second cell cycles of early mouse embryos. In contrast, after the four-cell stage, not only ERKs, but also Raf-1 and MEK-1, were not phosphorylated at any stage during the cell cycle in mouse early embryos. These results suggest that the MAPK cascade in mouse embryos is regulated by the same mechanism as in somatic cells before the two-cell stage, and that regulation is changed to an embryo-specific mechanism after the four-cell stage.


2004 ◽  
Vol 15 (4) ◽  
pp. 1785-1792 ◽  
Author(s):  
Paul Lee ◽  
Arsalan Shabbir ◽  
Christopher Cardozo ◽  
Avrom J. Caplan

Hsp90 functions in association with several cochaperones for folding of protein kinases and transcription factors, although the relative contribution of each to the overall reaction is unknown. We assayed the role of nine different cochaperones in the activation of Ste11, a Saccharomyces cerevisiae mitogen-activated protein kinase kinase kinase. Studies on signaling via this protein kinase pathway was measured by α-factor-stimulated induction of FIG1 or lacZ, and repression of HHF1. Several cochaperone mutants tested had reduced FIG1 induction or HHF1 repression, although to differing extents. The greatest defects were in cpr7Δ, sse1Δ, and ydj1Δ mutants. Assays of Ste11 kinase activity revealed a pattern of defects in the cochaperone mutant strains that were similar to the gene expression studies. Overexpression of CDC37, a chaperone required for protein kinase folding, suppressed defects the sti1Δ mutant back to wild-type levels. CDC37 overexpression also restored stable Hsp90 binding to the Ste11 protein kinase domain in the sti1Δ mutant strain. These data suggest that Cdc37 and Sti1 have functional overlap in stabilizing Hsp90:client complexes. Finally, we show that Cns1 functions in MAP kinase signaling in association with Cpr7.


1996 ◽  
Vol 16 (8) ◽  
pp. 4095-4106 ◽  
Author(s):  
D M Lyons ◽  
S K Mahanty ◽  
K Y Choi ◽  
M Manandhar ◽  
E A Elion

The mating mitogen-activated protein kinase (MAPK) cascade has three major outputs prior to fusion: transcriptional activation of many genes, cell cycle arrest in the G1 phase, and polarized growth. Bem1 localizes near the cortical actin cytoskeleton and is essential for polarized growth during mating. Here we show that Bem1 is required for efficient signal transduction and coordinates MAPK cascade activation with G1 arrest and mating. bem1delta null mutants are defective in G1 arrest and transcriptional activation in response to mating pheromone. Bem1 protein stimulates Fus3 (MAPK) activity and associates with Ste5, the tethering protein essential for activation of the MAPK kinase kinase Ste11. Bem1-Ste5 complexes also contain Ste11, Ste7 (MAPK kinase), and Fus3, suggesting that Ste5 localizes the MAPK cascade to Bem1. Strikingly, Bem1 also copurifies with Far1, a Fus3 substrate required for G1 arrest and proper polarized growth during mating. These and other results suggest that Bem1 may cross-link the Ste5-MAPK cascade complex to upstream activators and specific downstream substrates at the shmoo tip, thus enabling efficient circuitry for G1 arrest and mating.


2003 ◽  
Vol 2 (6) ◽  
pp. 1187-1199 ◽  
Author(s):  
Philip Müller ◽  
Gerhard Weinzierl ◽  
Andreas Brachmann ◽  
Michael Feldbrügge ◽  
Regine Kahmann

ABSTRACT In the phytopathogenic fungus Ustilago maydis, pheromone-mediated cell fusion is a prerequisite for the generation of the infectious dikaryon. The pheromone signal elevates transcription of the pheromone genes and elicits formation of conjugation hyphae. Cyclic AMP and mitogen-activated protein kinase (MAPK) signaling are involved in this process. The MAPK cascade is presumed to be composed of Ubc4 (MAPK kinase kinase), Fuz7 (MAPK kinase), and Ubc3/Kpp2 (MAPK). We isolated the kpp4 gene and found it to be allelic to ubc4. Epistasis analyses with constitutively active alleles of kpp4 and fuz7 substantiate that Kpp4, Fuz7, and Kpp2/Ubc3 are components of the same module. Moreover, we demonstrate that Fuz7 activates Kpp2 and shows interactions in vitro. Signaling via this cascade regulates expression of pheromone-responsive genes, presumably through acting on the transcription factor Prf1. Interestingly, the same cascade is needed for conjugation tube formation, and this process does not involve Prf1. In addition, fuz7 as well as kpp4 deletion strains are nonpathogenic, while kpp2 deletion mutants are only attenuated in pathogenesis. Here we show that strains expressing the unphosphorylatable allele kpp2T182A/Y184F are severely affected in tumor induction and display defects in early infection-related differentiation.


2018 ◽  
Vol 14 (3) ◽  
pp. e1006875 ◽  
Author(s):  
Cong Jiang ◽  
Xue Zhang ◽  
Huiquan Liu ◽  
Jin-Rong Xu

Sign in / Sign up

Export Citation Format

Share Document