scholarly journals Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns

2004 ◽  
Vol 3 (2) ◽  
pp. 536-545 ◽  
Author(s):  
Susana García-Sánchez ◽  
Sylvie Aubert ◽  
Ismaïl Iraqui ◽  
Guilhem Janbon ◽  
Jean-Marc Ghigo ◽  
...  

ABSTRACT Like many bacteria, yeast species can form biofilms on several surfaces. Candida albicans colonizes the surfaces of catheters, prostheses, and epithelia, forming biofilms that are extremely resistant to antifungal drugs. We have used transcript profiling to investigate the specific properties of C. albicans biofilms. Biofilm and planktonic cultures produced under different conditions of nutrient flow, aerobiosis, or glucose concentration were compared by overall gene expression correlation. Correlation was much higher between biofilms than planktonic populations irrespective of the growth conditions, indicating that biofilm populations formed in different environments display very similar and specific transcript profiles. A first cluster of 325 differentially expressed genes was identified. In agreement with the overrepresentation of amino acid biosynthesis genes in this cluster, Gcn4p, a regulator of amino acid metabolism, was shown to be required for normal biofilm growth. To identify biofilm-related genes that are independent of mycelial development, we studied the transcriptome of biofilms produced by a wild-type, hypha-producing strain and a cph1/cph1 efg1/efg1 strain defective for hypha production. This analysis identified a cluster of 317 genes expressed independently of hypha formation, whereas 86 genes were dependent on mycelial development. Both sets revealed the activation of the sulfur-amino acid biosynthesis pathway as a feature of C. albicans biofilms.

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1617
Author(s):  
Mia T. Parenteau ◽  
Hong Gu ◽  
Bernie J. Zebarth ◽  
Athyna N. Cambouris ◽  
Jean Lafond ◽  
...  

Potato tuber yields depend on nitrogen (N) supply, which affects source–sink relations. Transcriptome sequencing of the foliar source using a single field trial identified gene expression responsive to 180 kg N ha−1. The expression of N-responsive genes was further analyzed in the next stage using a NanoString nCounter over an expanded number of foliar samples from seven field trials with varying N rates, sites, and cultivars. Least absolute shrinkage and selection operator (LASSO) regression models of gene expression predictive of yield, total plant N uptake, and tuber-specific gravity (proxy for dry matter) were built. Genes in the LASSO model for yield were associated with source–sink partitioning. A key gene regulating tuberization and senescence, StSP6A Flowering locus T, was found in the LASSO model predicting tuber yield, but not the other models. An aminotransferase involved in photorespiratory N assimilation and amino acid biosynthesis was found in all LASSO models. Other genes functioning in amino acid biosynthesis and integration of sulfur (S) and N metabolism were also found in the yield prediction model. The study provides insights on N responses in foliage of potato plants that affect source–sink partitioning. Additionally, N-responsive genes predictive of yield are candidate indicators of N status.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Veronica B. Craik ◽  
Alexander D. Johnson ◽  
Matthew B. Lohse

ABSTRACT White and opaque cells of Candida albicans have the same genome but differ in gene expression patterns, metabolic profiles, and host niche preferences. We tested whether these differences, which include the differential expression of drug transporters, resulted in different sensitivities to 27 antifungal agents. The analysis was performed in two different strain backgrounds; although there was strain-to-strain variation, only terbinafine hydrochloride and caspofungin showed consistent, 2-fold differences between white and opaque cells across both strains.


1987 ◽  
Vol 208 (1-2) ◽  
pp. 159-167 ◽  
Author(s):  
Kiyoji Nishiwaki ◽  
Naoyuki Hayashi ◽  
Shinji Irie ◽  
Dong-Hyo Chung ◽  
Satoshi Harashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document