scholarly journals Ability of Sit4p To Promote K+ Efflux via Nha1p Is Modulated by Sap155p and Sap185p

2005 ◽  
Vol 4 (6) ◽  
pp. 1041-1049 ◽  
Author(s):  
Cara Marie A. Manlandro ◽  
Devon H. Haydon ◽  
Anne G. Rosenwald

ABSTRACT We demonstrate here that SAP155 encodes a negative modulator of K+ efflux in the yeast Saccharomyces cerevisiae. Overexpression of SAP155 decreases efflux, whereas deletion increases efflux. In contrast, a homolog of SAP155, called SAP185, encodes a positive modulator of K+ efflux: overexpression of SAP185 increases efflux, whereas deletion decreases efflux. Two other homologs, SAP4 and SAP190, are without effect on K+ homeostasis. Both SAP155 and SAP185 require the presence of SIT4 for function, which encodes a PP2A-like phosphatase important for the G1-S transition through the cell cycle. Overexpression of either the outwardly rectifying K+ channel, Tok1p, or the putative plasma membrane K+/H+ antiporter, Kha1p, increases efflux in both wild-type and sit4Δ strains. However, overexpression of the Na+-K+/H+ antiporter, Nha1p, is without effect in a sit4Δ strain, suggesting that Sit4p signals to Nha1p. In summary, the combined activities of Sap155p and Sap185p appear to control the function of Nha1p in K+ homeostasis via Sit4p.

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 45-56
Author(s):  
Luther Davis ◽  
JoAnne Engebrecht

Abstract The DOM34 gene of Saccharomyces cerevisiae is similar togenes found in diverse eukaryotes and archaebacteria. Analysis of dom34 strains shows that progression through the G1 phase of the cell cycle is delayed, mutant cells enter meiosis aberrantly, and their ability to form pseudohyphae is significantly diminished. RPS30A, which encodes ribosomal protein S30, was identified in a screen for high-copy suppressors of the dom34Δ growth defect. dom34Δ mutants display an altered polyribosome profile that is rescued by expression of RPS30A. Taken together, these data indicate that Dom34p functions in protein translation to promote G1 progression and differentiation. A Drosophila homolog of Dom34p, pelota, is required for the proper coordination of meiosis and spermatogenesis. Heterologous expression of pelota in dom34Δ mutants restores wild-type growth and differentiation, suggesting conservation of function between the eukaryotic members of the gene family.


2011 ◽  
Vol 124 (7) ◽  
pp. 1055-1066 ◽  
Author(s):  
B. Zanolari ◽  
U. Rockenbauch ◽  
M. Trautwein ◽  
L. Clay ◽  
Y. Barral ◽  
...  

1988 ◽  
Vol 8 (11) ◽  
pp. 4675-4684 ◽  
Author(s):  
F R Cross

The mating pheromone alpha-factor arrests Saccharomyces cerevisiae MATa cells in the G1 phase of the cell cycle. Size control is also exerted in G1, since cells do not exit G1 until they have attained a critical size. A dominant mutation (DAF1-1) which causes both alpha-factor resistance and small cell size (volume about 0.6-fold that of the wild type) has been isolated and characterized genetically and by molecular cloning. Several alpha-factor-induced mRNAs were induced equivalently in daf1+ and DAF1-1 cells. The DAF1-1 mutation consisted of a termination codon two-thirds of the way through the daf1+ coding sequence. A chromosomal deletion of DAF1 produced by gene transplacement increased cell volume about 1.5-fold; thus, DAF1-1 may be a hyperactive or deregulated allele of a nonessential gene involved in G1 size control. Multiple copies of DAF1-1 also greatly reduced the duration of the G1 phase of the cell cycle.


1993 ◽  
Vol 105 (2) ◽  
pp. 519-528
Author(s):  
F. Boschelli ◽  
S.M. Uptain ◽  
J.J. Lightbody

The lethal effects of the expression of the oncogenic protein tyrosine kinase p60v-src in Saccharomyces cerevisiae are associated with a loss of cell cycle control at the G1/S and G2/M checkpoints. Results described here indicate that the ability of v-Src to kill yeast is dependent on the integrity of the SH2 domain, a region of the Src protein involved in recognition of proteins phosphorylated on tyrosine. Catalytically active v-Src proteins with deletions in the SH2 domain have little effect on yeast growth, unlike wild-type v-Src protein, which causes accumulation of large-budded cells, perturbation of spindle microtubules and increased DNA content when expressed. The proteins phosphorylated on tyrosine in cells expressing v-Src differ from those in cells expressing a Src protein with a deletion in the SH2 domain. Also, unlike the wild-type v-Src protein, which drastically increases histone H1-associated Cdc28 kinase activity, c-Src and an altered v-Src protein have no effect on Cdc28 kinase activity. These results indicate that the SH2 domain is functionally important in the disruption of the yeast cell cycle by v-Src.


2010 ◽  
Vol 21 (13) ◽  
pp. 2161-2171 ◽  
Author(s):  
Kin Chan ◽  
Jesse P. Goldmark ◽  
Mark B. Roth

The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.


1983 ◽  
Vol 3 (5) ◽  
pp. 922-930
Author(s):  
R L Roberts ◽  
B Bowers ◽  
M L Slater ◽  
E Cabib

Growth of Saccharomyces cerevisiae cell cycle mutants cdc3, cdc4, cdc7, cdc24, and cdc28 at a nonpermissive temperature (37 degrees C) resulted in increased accumulation of chitin relative to other cell wall components, as compared with that observed at a permissive temperature (25 degrees C). Wild-type cells showed the same chitin/carbohydrate ratio at both temperatures, whereas mutants cdc13 and cdc21 yielded only a small increase in the ratio at 37 degrees C. These results confirm and extend those reported by B. F. Sloat and J. R. Pringle (Science 200:1171-1173, 1978) for mutant cdc24. The distribution of chitin in the cell wall was studied by electron microscopy, by specific staining with wheat germ agglutinin-colloidal gold complexes. At the permissive temperature, chitin was restricted to the septal region in all strains, whereas at 37 degrees C a generalized distribution of chitin in the cell wall was observed in all mutants. These results do not support a unique interdependence between the product of the cdc24 gene and localization of chitin deposition; they suggest that unbalanced conditions created in the cell by arresting the cycle at different stages result in generalized activation of the chitin synthetase zymogen. Thus, blockage of an event in the cell cycle may lead to consequences that are not functionally related to that event under normal conditions.


1988 ◽  
Vol 8 (11) ◽  
pp. 4675-4684
Author(s):  
F R Cross

The mating pheromone alpha-factor arrests Saccharomyces cerevisiae MATa cells in the G1 phase of the cell cycle. Size control is also exerted in G1, since cells do not exit G1 until they have attained a critical size. A dominant mutation (DAF1-1) which causes both alpha-factor resistance and small cell size (volume about 0.6-fold that of the wild type) has been isolated and characterized genetically and by molecular cloning. Several alpha-factor-induced mRNAs were induced equivalently in daf1+ and DAF1-1 cells. The DAF1-1 mutation consisted of a termination codon two-thirds of the way through the daf1+ coding sequence. A chromosomal deletion of DAF1 produced by gene transplacement increased cell volume about 1.5-fold; thus, DAF1-1 may be a hyperactive or deregulated allele of a nonessential gene involved in G1 size control. Multiple copies of DAF1-1 also greatly reduced the duration of the G1 phase of the cell cycle.


1997 ◽  
Vol 17 (6) ◽  
pp. 3408-3417 ◽  
Author(s):  
K S Lee ◽  
R L Erikson

Plk is a mammalian serine/threonine protein kinase whose activity peaks at the onset of M phase. It is closely related to other mammalian kinases, Snk, Fnk, and Prk, as well as to Xenopus laevis Plx1, Drosophila melanogaster polo, Schizosaccharomyces pombe Plo1, and Saccharomyces cerevisiae Cdc5. The M phase of the cell cycle is a highly coordinated process which insures the equipartition of genetic and cellular materials during cell division. To enable understanding of the function of Plk during M phase progression, various Plk mutants were generated and expressed in Sf9 cells and budding yeast. In vitro kinase assays with Plk immunoprecipitates prepared from Sf9 cells indicate that Glu206 and Thr210 play equally important roles for Plk activity and that replacement of Thr210 with a negatively charged residue elevates Plk specific activity. Ectopic expression of wild-type Plk (Plk WT) complements the cell division defect associated with the cdc5-1 mutation in S. cerevisiae. The degree of complementation correlates closely with the Plk activity measured in vitro, as it is enhanced by a mutationally activated Plk, T210D, but is not observed with the inactive forms K82M, D194N, and D194R. In a CDC5 wild-type background, expression of Plk WT or T210D, but not of inactive forms, induced a sharp accumulation of cells in G1. Consistent with elevated Plk activity, this phenomenon was enhanced by the C-terminally deleted forms WT deltaC and T210D deltaC. Expression of T210D also induced a class of cells with unusually elongated buds which developed multiple septal structures. This was not observed with the C-terminally deleted form T210D deltaC, however. It appears that the C terminus of Plk is not required for the observed cell cycle influence but may be important for polarized cell growth and septal structure formation.


1992 ◽  
Vol 38 (2) ◽  
pp. 149-152 ◽  
Author(s):  
J. Hašek ◽  
J. Jochová ◽  
P. Dráber ◽  
V. Viklický ◽  
E. Streiblová

Using the monoclonal antibody MA-01, which recognizes a 210-kDa protein in cell-free extracts, spindle and cytoplasmic microtubules were visualized in budding yeast, Saccharomyces cerevisiae. In additional, a spot-like staining was found beneath the plasma membrane, revealing in part correlation with F-actin distribution. This pattern was common for cells of all cell-cycle stages. The interaction of the protein recognized by MA-01 with microtubules was confirmed in the double labeling with a polyclonal antitubulin antibody and by the sensitivity of intranuclear structures stained by MA-01 to the microtubule disrupting drug nocodazole. Key words: immunoblotting, immunofluorescence, microtubule-interacting protein, Saccharomyces cerevisiae.


Sign in / Sign up

Export Citation Format

Share Document