Yeast dom34 Mutants Are Defective in Multiple Developmental Pathways and Exhibit Decreased Levels of Polyribosomes

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 45-56
Author(s):  
Luther Davis ◽  
JoAnne Engebrecht

Abstract The DOM34 gene of Saccharomyces cerevisiae is similar togenes found in diverse eukaryotes and archaebacteria. Analysis of dom34 strains shows that progression through the G1 phase of the cell cycle is delayed, mutant cells enter meiosis aberrantly, and their ability to form pseudohyphae is significantly diminished. RPS30A, which encodes ribosomal protein S30, was identified in a screen for high-copy suppressors of the dom34Δ growth defect. dom34Δ mutants display an altered polyribosome profile that is rescued by expression of RPS30A. Taken together, these data indicate that Dom34p functions in protein translation to promote G1 progression and differentiation. A Drosophila homolog of Dom34p, pelota, is required for the proper coordination of meiosis and spermatogenesis. Heterologous expression of pelota in dom34Δ mutants restores wild-type growth and differentiation, suggesting conservation of function between the eukaryotic members of the gene family.

1988 ◽  
Vol 8 (11) ◽  
pp. 4675-4684 ◽  
Author(s):  
F R Cross

The mating pheromone alpha-factor arrests Saccharomyces cerevisiae MATa cells in the G1 phase of the cell cycle. Size control is also exerted in G1, since cells do not exit G1 until they have attained a critical size. A dominant mutation (DAF1-1) which causes both alpha-factor resistance and small cell size (volume about 0.6-fold that of the wild type) has been isolated and characterized genetically and by molecular cloning. Several alpha-factor-induced mRNAs were induced equivalently in daf1+ and DAF1-1 cells. The DAF1-1 mutation consisted of a termination codon two-thirds of the way through the daf1+ coding sequence. A chromosomal deletion of DAF1 produced by gene transplacement increased cell volume about 1.5-fold; thus, DAF1-1 may be a hyperactive or deregulated allele of a nonessential gene involved in G1 size control. Multiple copies of DAF1-1 also greatly reduced the duration of the G1 phase of the cell cycle.


1988 ◽  
Vol 8 (11) ◽  
pp. 4675-4684
Author(s):  
F R Cross

The mating pheromone alpha-factor arrests Saccharomyces cerevisiae MATa cells in the G1 phase of the cell cycle. Size control is also exerted in G1, since cells do not exit G1 until they have attained a critical size. A dominant mutation (DAF1-1) which causes both alpha-factor resistance and small cell size (volume about 0.6-fold that of the wild type) has been isolated and characterized genetically and by molecular cloning. Several alpha-factor-induced mRNAs were induced equivalently in daf1+ and DAF1-1 cells. The DAF1-1 mutation consisted of a termination codon two-thirds of the way through the daf1+ coding sequence. A chromosomal deletion of DAF1 produced by gene transplacement increased cell volume about 1.5-fold; thus, DAF1-1 may be a hyperactive or deregulated allele of a nonessential gene involved in G1 size control. Multiple copies of DAF1-1 also greatly reduced the duration of the G1 phase of the cell cycle.


2018 ◽  
Vol 29 (22) ◽  
pp. 2644-2655 ◽  
Author(s):  
Christina M. Kelliher ◽  
Matthew W. Foster ◽  
Francis C. Motta ◽  
Anastasia Deckard ◽  
Erik J. Soderblom ◽  
...  

In the budding yeast Saccharomyces cerevisiae, transcription factors (TFs) regulate the periodic expression of many genes during the cell cycle, including gene products required for progression through cell-cycle events. Experimental evidence coupled with quantitative models suggests that a network of interconnected TFs is capable of regulating periodic genes over the cell cycle. Importantly, these dynamical models were built on transcriptomics data and assumed that TF protein levels and activity are directly correlated with mRNA abundance. To ask whether TF transcripts match protein expression levels as cells progress through the cell cycle, we applied a multiplexed targeted mass spectrometry approach (parallel reaction monitoring) to synchronized populations of cells. We found that protein expression of many TFs and cell-cycle regulators closely followed their respective mRNA transcript dynamics in cycling wild-type cells. Discordant mRNA/protein expression dynamics was also observed for a subset of cell-cycle TFs and for proteins targeted for degradation by E3 ubiquitin ligase complexes such as SCF (Skp1/Cul1/F-box) and APC/C (anaphase-promoting complex/cyclosome). We further profiled mutant cells lacking B-type cyclin/CDK activity ( clb1-6) where oscillations in ubiquitin ligase activity, cyclin/CDKs, and cell-cycle progression are halted. We found that a number of proteins were no longer periodically degraded in clb1-6 mutants compared with wild type, highlighting the importance of posttranscriptional regulation. Finally, the TF complexes responsible for activating G1/S transcription (SBF and MBF) were more constitutively expressed at the protein level than at periodic mRNA expression levels in both wild-type and mutant cells. This comprehensive investigation of cell-cycle regulators reveals that multiple layers of regulation (transcription, protein stability, and proteasome targeting) affect protein expression dynamics during the cell cycle.


1999 ◽  
Vol 340 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Parisa DANAIE ◽  
Michael ALTMANN ◽  
Michael N. HALL ◽  
Hans TRACHSEL ◽  
Stephen B. HELLIWELL

The essential cap-binding protein (eIF4E) of Saccharomycescerevisiae is encoded by the CDC33 (wild-type) gene, originally isolated as a mutant, cdc33-1, which arrests growth in the G1 phase of the cell cycle at 37 °C. We show that other cdc33 mutants also arrest in G1. One of the first events required for G1-to-S-phase progression is the increased expression of cyclin 3. Constructs carrying the 5ʹ-untranslated region of CLN3 fused to lacZ exhibit weak reporter activity, which is significantly decreased in a cdc33-1 mutant, implying that CLN3 mRNA is an inefficiently translated mRNA that is sensitive to perturbations in the translation machinery. A cdc33-1 strain expressing either stable Cln3p (Cln3-1p) or a hybrid UBI4 5ʹ-CLN3 mRNA, whose translation displays decreased dependence on eIF4E, arrested randomly in the cell cycle. In these cells CLN2 mRNA levels remained high, indicating that Cln3p activity is maintained. Induction of a hybrid UBI4 5ʹ-CLN3 message in a cdc33-1 mutant previously arrested in G1 also caused entry into a new cell cycle. We conclude that eIF4E activity in the G1-phase is critical in allowing sufficient Cln3p activity to enable yeast cells to enter a new cell cycle.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 973-981
Author(s):  
Kevin C Keith ◽  
Molly Fitzgerald-Hayes

Abstract Each Saccharomyces cerevisiae chromosome contains a single centromere composed of three conserved DNA elements, CDE I, II, and III. The histone H3 variant, Cse4p, is an essential component of the S. cerevisiae centromere and is thought to replace H3 in specialized nucleosomes at the yeast centromere. To investigate the genetic interactions between Cse4p and centromere DNA, we measured the chromosome loss rates exhibited by cse4 cen3 double-mutant cells that express mutant Cse4 proteins and carry chromosomes containing mutant centromere DNA (cen3). When compared to loss rates for cells carrying the same cen3 DNA mutants but expressing wild-type Cse4p, we found that mutations throughout the Cse4p histone-fold domain caused surprisingly large increases in the loss of chromosomes carrying CDE I or CDE II mutant centromeres, but had no effect on chromosomes with CDE III mutant centromeres. Our genetic evidence is consistent with direct interactions between Cse4p and the CDE I-CDE II region of the centromere DNA. On the basis of these and other results from genetic, biochemical, and structural studies, we propose a model that best describes the path of the centromere DNA around a specialized Cse4p-nucleosome.


1983 ◽  
Vol 3 (3) ◽  
pp. 457-465
Author(s):  
C H Kim ◽  
J R Warner

In Saccharomyces cerevisiae the synthesis of ribosomal proteins declines temporarily after a culture has been subjected to a mild temperature shock, i.e., a shift from 23 to 36 degrees C, each of which support growth. Using cloned genes for several S. cerevisiae ribosomal proteins, we found that the changes in the synthesis of ribosomal proteins parallel the changes in the concentration of mRNA of each. The disappearance and reappearance of the mRNA is due to a brief but severe inhibition of the transcription of each of the ribosomal protein genes, although the total transcription of mRNA in the cells is relatively unaffected by the temperature shock. The precisely coordinated response of these genes, which are scattered throughout the genome, suggests that either they or the enzyme which transcribes them has unique properties. In certain S. cerevisiae mutants, the synthesis of ribosomal proteins never recovers from a temperature shift. Yet both the decline and the resumption of transcription of these genes during the 30 min after the temperature shift are indistinguishable from those in wild-type cells. The failure of the mutant cells to grow at the restrictive temperature appears to be due to their inability to process the RNA transcribed from genes which have introns (Rosbash et al., Cell 24:679-686, 1981), a large proportion of which appear to be ribosomal protein genes.


1990 ◽  
Vol 10 (10) ◽  
pp. 5071-5076
Author(s):  
C A Hrycyna ◽  
S Clarke

Membrane extracts of sterile Saccharomyces cerevisiae strains containing the a-specific ste14 mutation lack a farnesyl cysteine C-terminal carboxyl methyltransferase activity that is present in wild-type a and alpha cells. Other a-specific sterile strains with ste6 and ste16 mutations also have wild-type levels of the farnesyl cysteine carboxyl methyltransferase activity. This enzyme activity, detected by using a synthetic peptide sequence based on the C-terminus of a ras protein, may be responsible not only for the essential methylation of the farnesyl cysteine residue of a mating factor, but also for the methylation of yeast RAS1 and RAS2 proteins and possibly other polypeptides with similar C-terminal structures. We demonstrate that the farnesylation of the cysteine residue in the peptide is required for the methyltransferase activity, suggesting that methyl esterification follows the lipidation reaction in the cell. To show that the loss of methyltransferase activity is a direct result of the ste14 mutation, we transformed ste14 mutant cells with a plasmid complementing the mating defect of this strain and found that active enzyme was produced. Finally, we demonstrated that a similar transformation of cells possessing the wild-type STE14 gene resulted in sixfold overproduction of the enzyme. Although more complicated possibilities cannot be ruled out, these results suggest that STE14 is a candidate for the structural gene for a methyltransferase involved in the formation of isoprenylated cysteine alpha-methyl ester C-terminal structures.


1993 ◽  
Vol 105 (2) ◽  
pp. 519-528
Author(s):  
F. Boschelli ◽  
S.M. Uptain ◽  
J.J. Lightbody

The lethal effects of the expression of the oncogenic protein tyrosine kinase p60v-src in Saccharomyces cerevisiae are associated with a loss of cell cycle control at the G1/S and G2/M checkpoints. Results described here indicate that the ability of v-Src to kill yeast is dependent on the integrity of the SH2 domain, a region of the Src protein involved in recognition of proteins phosphorylated on tyrosine. Catalytically active v-Src proteins with deletions in the SH2 domain have little effect on yeast growth, unlike wild-type v-Src protein, which causes accumulation of large-budded cells, perturbation of spindle microtubules and increased DNA content when expressed. The proteins phosphorylated on tyrosine in cells expressing v-Src differ from those in cells expressing a Src protein with a deletion in the SH2 domain. Also, unlike the wild-type v-Src protein, which drastically increases histone H1-associated Cdc28 kinase activity, c-Src and an altered v-Src protein have no effect on Cdc28 kinase activity. These results indicate that the SH2 domain is functionally important in the disruption of the yeast cell cycle by v-Src.


1992 ◽  
Vol 3 (12) ◽  
pp. 1443-1454 ◽  
Author(s):  
J T McGrew ◽  
L Goetsch ◽  
B Byers ◽  
P Baum

Mutations in the ESP1 gene of Saccharomyces cerevisiae disrupt normal cell-cycle control and cause many cells in a mutant population to accumulate extra spindle pole bodies. To determine the stage at which the esp1 gene product becomes essential for normal cell-cycle progression, synchronous cultures of ESP1 mutant cells were exposed to the nonpermissive temperature for various periods of time. The mutant cells retained viability until the onset of mitosis, when their viability dropped markedly. Examination of these cells by fluorescence and electron microscopy showed the first detectable defect to be a structural failure in the spindle. Additionally, flow cytometric analysis of DNA content demonstrated that massive chromosome missegregation accompanied this failure of spindle function. Cytokinesis occurred despite the aberrant nuclear division, which often resulted in segregation of both spindle poles to the same cell. At later times, the missegregated spindle pole bodies entered a new cycle of duplication, thereby leading to the accumulation of extra spindle pole bodies within a single nucleus. The DNA sequence predicts a protein product similar to those of two other genes that are also required for nuclear division: the cut1 gene of Schizosaccharomyces pombe and the bimB gene of Aspergillus nidulans.


Sign in / Sign up

Export Citation Format

Share Document