scholarly journals DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae.

1988 ◽  
Vol 8 (11) ◽  
pp. 4675-4684 ◽  
Author(s):  
F R Cross

The mating pheromone alpha-factor arrests Saccharomyces cerevisiae MATa cells in the G1 phase of the cell cycle. Size control is also exerted in G1, since cells do not exit G1 until they have attained a critical size. A dominant mutation (DAF1-1) which causes both alpha-factor resistance and small cell size (volume about 0.6-fold that of the wild type) has been isolated and characterized genetically and by molecular cloning. Several alpha-factor-induced mRNAs were induced equivalently in daf1+ and DAF1-1 cells. The DAF1-1 mutation consisted of a termination codon two-thirds of the way through the daf1+ coding sequence. A chromosomal deletion of DAF1 produced by gene transplacement increased cell volume about 1.5-fold; thus, DAF1-1 may be a hyperactive or deregulated allele of a nonessential gene involved in G1 size control. Multiple copies of DAF1-1 also greatly reduced the duration of the G1 phase of the cell cycle.

1988 ◽  
Vol 8 (11) ◽  
pp. 4675-4684
Author(s):  
F R Cross

The mating pheromone alpha-factor arrests Saccharomyces cerevisiae MATa cells in the G1 phase of the cell cycle. Size control is also exerted in G1, since cells do not exit G1 until they have attained a critical size. A dominant mutation (DAF1-1) which causes both alpha-factor resistance and small cell size (volume about 0.6-fold that of the wild type) has been isolated and characterized genetically and by molecular cloning. Several alpha-factor-induced mRNAs were induced equivalently in daf1+ and DAF1-1 cells. The DAF1-1 mutation consisted of a termination codon two-thirds of the way through the daf1+ coding sequence. A chromosomal deletion of DAF1 produced by gene transplacement increased cell volume about 1.5-fold; thus, DAF1-1 may be a hyperactive or deregulated allele of a nonessential gene involved in G1 size control. Multiple copies of DAF1-1 also greatly reduced the duration of the G1 phase of the cell cycle.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 45-56
Author(s):  
Luther Davis ◽  
JoAnne Engebrecht

Abstract The DOM34 gene of Saccharomyces cerevisiae is similar togenes found in diverse eukaryotes and archaebacteria. Analysis of dom34 strains shows that progression through the G1 phase of the cell cycle is delayed, mutant cells enter meiosis aberrantly, and their ability to form pseudohyphae is significantly diminished. RPS30A, which encodes ribosomal protein S30, was identified in a screen for high-copy suppressors of the dom34Δ growth defect. dom34Δ mutants display an altered polyribosome profile that is rescued by expression of RPS30A. Taken together, these data indicate that Dom34p functions in protein translation to promote G1 progression and differentiation. A Drosophila homolog of Dom34p, pelota, is required for the proper coordination of meiosis and spermatogenesis. Heterologous expression of pelota in dom34Δ mutants restores wild-type growth and differentiation, suggesting conservation of function between the eukaryotic members of the gene family.


1988 ◽  
Vol 8 (6) ◽  
pp. 2342-2349 ◽  
Author(s):  
B Connolly ◽  
C I White ◽  
J E Haber

The kinetics of mating type switching in Saccharomyces cerevisiae can be followed at the DNA level by using a galactose-inducible HO (GAL-HO) gene to initiate the event in synchronously growing cells. From the time that HO endonuclease cleaves MAT a until the detection of MAT alpha DNA took 60 min. When unbudded G1-phase cells were induced, switched to the opposite mating type in "pairs." In the presence of the DNA synthesis inhibitor hydroxyurea, HO-induced cleavage occurred but cells failed to complete switching. In these blocked cells, the HO-cut ends of MATa remained stable for at least 3 h. Upon removal of hydroxyurea, the cells completed the switch in approximately 1 h. The same kinetics of MAT switching were also seen in asynchronous cultures and when synchronously growing cells were induced at different times of the cell cycle. Thus, the only restriction that confined normal homothallic switching to the G1 phase of the cell cycle was the expression of HO endonuclease. Further evidence that galactose-induced cells can switch in the G2 phase of the cell cycle was the observation that these cells did not always switch in pairs. This suggests that two chromatids, both cleaved with HO endonuclease, can interact independently with the donors HML alpha and HMRa.


1988 ◽  
Vol 8 (6) ◽  
pp. 2342-2349 ◽  
Author(s):  
B Connolly ◽  
C I White ◽  
J E Haber

The kinetics of mating type switching in Saccharomyces cerevisiae can be followed at the DNA level by using a galactose-inducible HO (GAL-HO) gene to initiate the event in synchronously growing cells. From the time that HO endonuclease cleaves MAT a until the detection of MAT alpha DNA took 60 min. When unbudded G1-phase cells were induced, switched to the opposite mating type in "pairs." In the presence of the DNA synthesis inhibitor hydroxyurea, HO-induced cleavage occurred but cells failed to complete switching. In these blocked cells, the HO-cut ends of MATa remained stable for at least 3 h. Upon removal of hydroxyurea, the cells completed the switch in approximately 1 h. The same kinetics of MAT switching were also seen in asynchronous cultures and when synchronously growing cells were induced at different times of the cell cycle. Thus, the only restriction that confined normal homothallic switching to the G1 phase of the cell cycle was the expression of HO endonuclease. Further evidence that galactose-induced cells can switch in the G2 phase of the cell cycle was the observation that these cells did not always switch in pairs. This suggests that two chromatids, both cleaved with HO endonuclease, can interact independently with the donors HML alpha and HMRa.


1999 ◽  
Vol 340 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Parisa DANAIE ◽  
Michael ALTMANN ◽  
Michael N. HALL ◽  
Hans TRACHSEL ◽  
Stephen B. HELLIWELL

The essential cap-binding protein (eIF4E) of Saccharomycescerevisiae is encoded by the CDC33 (wild-type) gene, originally isolated as a mutant, cdc33-1, which arrests growth in the G1 phase of the cell cycle at 37 °C. We show that other cdc33 mutants also arrest in G1. One of the first events required for G1-to-S-phase progression is the increased expression of cyclin 3. Constructs carrying the 5ʹ-untranslated region of CLN3 fused to lacZ exhibit weak reporter activity, which is significantly decreased in a cdc33-1 mutant, implying that CLN3 mRNA is an inefficiently translated mRNA that is sensitive to perturbations in the translation machinery. A cdc33-1 strain expressing either stable Cln3p (Cln3-1p) or a hybrid UBI4 5ʹ-CLN3 mRNA, whose translation displays decreased dependence on eIF4E, arrested randomly in the cell cycle. In these cells CLN2 mRNA levels remained high, indicating that Cln3p activity is maintained. Induction of a hybrid UBI4 5ʹ-CLN3 message in a cdc33-1 mutant previously arrested in G1 also caused entry into a new cell cycle. We conclude that eIF4E activity in the G1-phase is critical in allowing sufficient Cln3p activity to enable yeast cells to enter a new cell cycle.


1991 ◽  
Vol 11 (10) ◽  
pp. 5251-5258
Author(s):  
B Zanolari ◽  
H Riezman

The alpha-factor pheromone binds to specific cell surface receptors on Saccharomyces cerevisiae a cells. The pheromone is then internalized, and cell surface receptors are down-regulated. At the same time, a signal is transmitted that causes changes in gene expression and cell cycle arrest. We show that the ability of cells to internalize alpha-factor is constant throughout the cell cycle, a cells are also able to respond to pheromone throughout the cycle even though there is cell cycle modulation of the expression of two pheromone-inducible genes, FUS1 and STE2. Both of these genes are expressed less efficiently near or just after the START point of the cell cycle in response to alpha-factor. For STE2, the basal level of expression is modulated in the same manner.


1982 ◽  
Vol 2 (4) ◽  
pp. 361-368 ◽  
Author(s):  
A E Wheals

By using time-lapse photomicroscopy, the individual cycle times and sizes at bud emergence were measured for a population of saccharomyces cerevisiae cells growing exponentially under balanced growth conditions in a specially constructed filming slide. There was extensive variability in both parameters for daughter and parent cells. The data on 162 pairs of siblings were analyzed for agreement with the predictions of the transition probability hypothesis and the critical-size hypothesis of yeast cell proliferation and also with a model incorporating both of these hypotheses in tandem. None of the models accounted for all of the experimental data, but two models did give good agreement to all of the data. The wobbly tandem model proposes that cells need to attain a critical size, which is very variable, enabling them to enter a start state from which they exit with first order kinetics. The sloppy size control model suggests that cells have an increasing probability per unit time of traversing start as they increase in size, reaching a high plateau value which is less than one. Both models predict that the kinetics of entry into the cell division sequence will strongly depend on variability in birth size and thus will be quite different for daughters and parents of the asymmetrically dividing yeast cells. Mechanisms underlying these models are discussed.


1996 ◽  
Vol 109 (6) ◽  
pp. 1647-1653 ◽  
Author(s):  
J. Creanor ◽  
J.M. Mitchison

The levels of the B cyclin p56cdc13 and the phosphatase p80cdc25 have been followed in selection-synchronised cultures of Schizosaccharomyces pombe wild-type and wee1 mutant cells. p56cdc13 has also been followed in induction-synchronised cells of the mutant cdc2-33. The main conclusions are: (1) cdc13 levels in wild-type cells start to rise from base line at about mid-G2, reach a peak before mitosis and then fall slowly through G1. Cells exit mitosis with appreciable levels of cdc13. (2) cdc13 levels in wee1 cells fall to zero in interphase. They also start to rise at the beginning of G2, which may be related to the absence of a mitotic size control. (3) cdc25 starts to rise later and reaches a peak after mitosis. This is not what would be expected from a simple mitotic inducer and suggests that cdc25 has an important function at the end of mitosis. (4) An upper (heavier) band of cdc25 peaks at the same time as the main band but rises and falls more rapidly. If this is a hyperphosphorylated form, its timing shows that it is most unlikely to function in the ways shown for such a form in eggs and mammalian cells. (5) Experiments with the mutant cdc10-129 and with hydroxyurea show that the initial signal to begin synthesis of cdc13 originates at Start. (6) In induction synchrony, where G2 spans across cell division, there is evidence that some events in one cycle cannot start in the previous one. (7) Revised timings are given for the times of mitosis in these cultures.


1981 ◽  
Vol 1 (8) ◽  
pp. 673-679
Author(s):  
V A Zakian ◽  
D W Wagner ◽  
W L Fangman

The cytoplasm of Saccharomyces cerevisiae contains two major classes of protein-encapsulated double-stranded ribonucleic acids (dsRNA's), L and M. Replication of L and M dsRNA's was examined in cells arrested in the G1 phase by either alpha-factor, a yeast mating pheromone, or the restrictive temperature for a cell cycle mutant (cdc7). [3H]uracil was added during the arrest periods to cells prelabeled with [14C]uracil, and replication was monitored by determining the ratio of 3H/14C for purified dsRNA's. Like mitochondrial deoxyribonucleic acid, both L and M dsRNA's were synthesized in the G1 arrested cells. The replication of L dsRNA was also examined during the S phase, using cells synchronized in two different ways. Cells containing the cdc7 mutation, treated sequentially with alpha-factor and then the restrictive temperature, enter a synchronous S phase when transferred to permissive temperature. When cells entered the S phase, synthesis of L dsRNA ceased, and little or no synthesis was detected throughout the S phase. Synthesis of L dsRNA was also observed in G1 phase cells isolated from asynchronous cultures by velocity centrifugation. Again, synthesis ceased when cells entered the S phase. These results indicate that L dsRNA replication is under cell cycle control. The control differs from that of mitochondrial deoxyribonucleic acid, which replicates in all phases of the cell cycle, and from that of 2-micron DNA, a multiple-copy plasmid whose replication is confined to the S phase.


Sign in / Sign up

Export Citation Format

Share Document