scholarly journals Complete Genome Sequences of the Plant Pathogens Ralstonia solanacearum Type Strain K60 and R. solanacearum Race 3 Biovar 2 Strain UW551

2017 ◽  
Vol 5 (40) ◽  
Author(s):  
Madeline M. Hayes ◽  
April M. MacIntyre ◽  
Caitilyn Allen

ABSTRACT Ralstonia solanacearum is a globally distributed plant pathogen that causes bacterial wilt diseases of many crop hosts, threatening both sustenance farming and industrial agriculture. Here, we present closed genome sequences for the R. solanacearum type strain, K60, and the cool-tolerant potato brown rot strain R. solanacearum UW551, a highly regulated U.S. select agent pathogen.

2020 ◽  
Vol 33 (7) ◽  
pp. 872-875 ◽  
Author(s):  
Nasim Sedighian ◽  
Marjon Krijger ◽  
Tanvi Taparia ◽  
S. Mohsen Taghavi ◽  
Emmanuel Wicker ◽  
...  

Ralstonia solanacearum, the causal agent of bacterial wilt and brown rot disease, is one of the major pathogens of solanaceous crops, including potato, around the globe. Biovar 2T (phylotype II/sequevar 25) of R. solanacearum is adapted to tropical lowlands and is only reported in South America and Iran. Thus far, no genome resource of the biovar 2T of the pathogen has been available. Here, we present the near-complete genome sequences of the biovar 2T strain CFBP 8697 as well as strain CFBP 8695 belonging to biovar 2 race 3, both isolated from potato in Iran. The genomic data of biovar 2T will extend our understanding of the virulence features of R. solanacearum and pave the way for research on biovar 2T functional and interaction genetics.


2017 ◽  
Vol 5 (23) ◽  
Author(s):  
Adam Kotorashvili ◽  
Galina Meparishvili ◽  
Giorgi Gogoladze ◽  
Nato Kotaria ◽  
Maka Muradashvili ◽  
...  

ABSTRACT Ralstonia solanacearum, the causative agent of bacterial wilt, is a devastating bacterial plant pathogen with a wide range of hosts. We report here the first draft genome sequences for three strains of Ralstonia solanacearum isolated from infected potato, tomato, and pepper plants in Georgia.


2019 ◽  
Vol 8 (3) ◽  
Author(s):  
Ana Maria Bocsanczy ◽  
Andres S. Espindola ◽  
David J. Norman

Ralstonia solanacearum is the causal agent of bacterial wilt in numerous species of plants. Here, we report the whole-genome sequence of three phylogenetically diverse R. solanacearum strains, P816, P822, and P824, reported for the first time as causal agents of an emerging blueberry disease in Florida.


2013 ◽  
Vol 92 (3) ◽  
pp. 366-374 ◽  
Author(s):  
Carine Aya N'Guessan ◽  
Sylvain Brisse ◽  
Anne-Claire Le Roux-Nio ◽  
Stéphane Poussier ◽  
Daouda Koné ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Dylan R. Zeiss ◽  
Paul A. Steenkamp ◽  
Lizelle A. Piater ◽  
Ian A. Dubery

Ralstonia solanacearum, the causal agent of bacterial wilt, is one of the most destructive bacterial plant pathogens. This is linked to its evolutionary adaptation to evade host surveillance during the infection process since many of the pathogen’s associated molecular patterns escape recognition. However, a 22-amino acid sequence of R. solanacearum-derived cold shock protein (csp22) was discovered to elicit an immune response in the Solanaceae. Using untargeted metabolomics, the effects of csp22-elicitation on the metabolome of Solanum lycopersicum leaves were investigated. Additionally, the study set out to discover trends that may suggest that csp22 inoculation bestows enhanced resistance on tomato against bacterial wilt. Results revealed the redirection of metabolism toward the phenylpropanoid pathway and sub-branches thereof. Compared to the host response with live bacteria, csp22 induced a subset of the discriminant metabolites, but also metabolites not induced in response to R. solanacearum. Here, a spectrum of hydroxycinnamic acids (especially ferulic acid), their conjugates and derivatives predominated as signatory biomarkers. From a metabolomics perspective, the results support claims that csp22 pre-treatment of tomato plants elicits increased resistance to R. solanacearum infection and contribute to knowledge on plant immune systems operation at an integrative level. The functional significance of these specialized compounds may thus support a heightened state of defense that can be applied to ward off attacking pathogens or toward priming of defense against future infections.


Author(s):  
Nicole Hugouvieux-Cotte-Pattat ◽  
Cécile Jacot des-Combes ◽  
Jérôme Briolay ◽  
Leighton Pritchard

The Pectobacteriaceae family of important plant pathogens includes the genus Dickeya . There are currently 12 described species of Dickeya , although some are poorly characterized at the genomic level. Only two genomes of Dickeya paradisiaca , the type strain CFBP 4178T and strain Ech703, have previously been sequenced. Members of this species are mostly of tropical or subtropical origin. During an investigation of strains present in our laboratory collection we sequenced the atypical strain A3967, registered as CFBP 722, isolated from Solanum lycopersicum (tomato) in the South of France in 1965. The genome of strain A3967 shares digital DNA–DNA hybridization and average nucleotide identity (ANI) values of 68 and 96 %, respectively, with the D. paradisiaca type strain CFBP 4178T. However, ANI analysis showed that D. paradisiaca strains are significantly dissimilar to the other Dickeya species, such that less than one third of their genomes align to any other Dickeya genome. On phenotypic, phylogenetic and genomic grounds, we propose a reassignment of D. paradisiaca to the genus level, for which we propose the name Musicola gen. nov., with Musicola paradisiaca as the type species and CFBP 4178T (NCPPB 2511T) as the type strain. Phenotypic analysis showed differences between strain A3967T and CFBP 4178T, such as for the assimilation of melibiose, raffinose and myo-inositol. These results support the description of two novel species, namely Musicola paradisiaca comb. nov. and Musicola keenii sp. nov., with CFBP 4178T (NCPPB 2511T=LMG 2542T) and A3967T (CFBP 8732T=LMG 31880T) as the type strains, respectively.


2017 ◽  
Vol 5 (14) ◽  
Author(s):  
Deju Chen ◽  
Bo Liu ◽  
Yujing Zhu ◽  
Jieping Wang ◽  
Zheng Chen ◽  
...  

ABSTRACT An avirulent strain of Ralstonia solanacearum FJAT-1458 was isolated from a living tomato. Here, we report the complete R. solanacearum FJAT-1458 genome sequence of 6,059,899 bp and 5,241 genes. This bacterial strain is a potential candidate as a biocontrol agent in the form of a plant vaccine for bacterial wilt.


2018 ◽  
Vol 6 (17) ◽  
Author(s):  
René Uebe ◽  
Dirk Schüler ◽  
Christian Jogler ◽  
Sandra Wiegand

ABSTRACT Magnetospirillum gryphiswaldense is a key organism for understanding magnetosome formation and magnetotaxis. As earlier studies suggested a high genomic plasticity, we (re)sequenced the type strain MSR-1 and the laboratory strain R3/S1. Both sequences differ by only 11 point mutations, but organization of the magnetosome island deviates from that of previous genome sequences.


2017 ◽  
Vol 5 (29) ◽  
Author(s):  
Angela J. Cornelius ◽  
William G. Miller ◽  
Albert J. Lastovica ◽  
Stephen L. W. On ◽  
Nigel P. French ◽  
...  

ABSTRACT We report the complete genome sequence of the Campylobacter concisus type strain ATCC 33237 and the draft genome sequences of eight additional well-characterized C. concisus strains. C. concisus has been shown to be a genetically heterogeneous species, and these nine genomes provide valuable information regarding the diversity within this taxon.


Sign in / Sign up

Export Citation Format

Share Document