scholarly journals Complete Genome Sequence of an Extensively Drug-Resistant Shewanella xiamenensis Strain Isolated from Algerian Hospital Effluents

2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Khadidja Yousfi ◽  
Abdelaziz Touati ◽  
Sadjia Bekal

In this study, we present the first complete genome of an extensively drug-resistant strain of Shewanella xiamenensis , collected from hospital effluents in Algeria. This genome includes the chromosome and a large new plasmid harboring several drug-resistance genes.

2021 ◽  
Vol 10 (38) ◽  
Author(s):  
Naveen Chaudhary ◽  
Dharminder Singh ◽  
Chandradeo Narayan ◽  
Bhaskar Samui ◽  
Balvinder Mohan ◽  
...  

Escherichia phage 590B, which was isolated from community sewage water in Chandigarh, India, exhibited lytic activity against an extensively drug-resistant uropathogenic Escherichia coli isolate. The genome of the phage is linear, double-stranded, and 44.39 kb long. Phage 590B is a member of the Siphoviridae family and is closest to phage vB_EcoS_XY2, which was isolated in China.


2019 ◽  
Author(s):  
Sanjeet Kumar ◽  
Kanika Bansal ◽  
Prashant P. Patil ◽  
Amandeep Kaur ◽  
Satinder Kaur ◽  
...  

ABSTRACTWe report first complete genome sequence and analysis of an extreme drug resistance (XDR) nosocomial Stenotrophomonas maltophilia that is resistant to the mainstream drugs i.e. trimethoprim/sulfamethoxazole (TMP/SXT) and levofloxacin. Taxonogenomic analysis revealed it to be a novel genomospecies of the Stenotrophomonas maltophilia complex (Smc). Comprehensive genomic investigation revealed fourteen dynamic regions (DRs) exclusive to SM866, consisting of diverse antibiotic resistance genes, efflux pumps, heavy metal resistance, various transcriptional regulators etc. Further, resistome analysis of Smc clearly depicted SM866 to be an enriched strain, having diversified resistome consisting of sul1 and sul2 genes. Interestingly, SM866 does not have any plasmid but it harbors two diverse super-integrons of chromosomal origin. Apart from genes for sulfonamide resistance (sul1 and sul2), both of these integrons harbor an array of antibiotic resistance genes linked to ISCR (IS91-like elements common regions) elements. These integrons also harbor genes encoding resistance to commonly used disinfectants like quaternary ammonium compounds and heavy metals like mercury. Hence, isolation of a novel strain belonging to a novel sequence type (ST) and genomospecies with diverse array of resistance from a tertiary care unit of India indicates extent and nature of selection pressure driving XDRs in hospital settings. There is an urgent need to employ complete genome based investigation using emerging technologies for tracking emergence of XDR at the global level and designing strategies of sanitization and antibiotic regime.Impact StatementThe hospital settings in India have one of the highest usage of antimicrobials and heavy patient load. Our finding of a novel clinical isolate of S. maltophilia complex with two super-integrons harbouring array of antibiotic resistance genes along with antimicrobials resistance genes indicates the extent and the nature of selection pressures in action. Further, the presence of ISCR type of transposable elements on both integrons not only indicates its propensity to transfer resistome but also their chromosomal origin suggests possibilities for further genomic/phenotypic complexities. Such complex cassettes and strain are potential threat to global health care. Hence, there is an urgent need to employ cost-effective long read technologies to keep vigilance on novel and extreme antimicrobial resistance pathogens in populous countries. There is also need for surveillance for usage of antimicrobials for hygiene and linked/rapid co-evolution of extreme drug resistance in nosocomial pathogens. Our finding of the chromosomal encoding XDR will shed a light on the need of hour to understand the evolution of an opportunistic nosocomial pathogen belonging to S. maltophilia.RepositoriesComplete genome sequence of Stenotrophomonas maltophilia SM866: CP031058


2020 ◽  
Vol 9 (47) ◽  
Author(s):  
Masahiro Toyokawa ◽  
Makoto Taniguchi ◽  
Kazuma Uesaka ◽  
Keiko Nishimura

ABSTRACT Nocardia wallacei is one of the members of the N. transvalensis complex which possess a highly unique susceptibility pattern. Here, we describe the closed complete genome sequence of the multidrug-resistant strain N. wallacei FMUON74, which was obtained using a hybrid approach combining Nanopore long-read sequencing and Illumina and DNBseq short-read sequencing.


2018 ◽  
Vol 7 (5) ◽  
Author(s):  
Clay S. Crippen ◽  
Steven Huynh ◽  
William G. Miller ◽  
Craig T. Parker ◽  
Christine M. Szymanski

Antimicrobial resistance is a major problem worldwide. Understanding the interplay between drug-resistant pathogens, such as Acinetobacter baumannii and related species, potentially acting as environmental reservoirs is critical for preventing the spread of resistance determinants.


2021 ◽  
Vol 10 (30) ◽  
Author(s):  
Toyotaka Sato ◽  
Masaru Usui ◽  
Kazuki Harada ◽  
Yukari Fukushima ◽  
Chie Nakajima ◽  
...  

The complete genome sequence of mcr-10 -possessing Enterobacter roggenkampii En37, isolated from a dog in Japan was determined. mcr-10 was located on a 70,277-bp IncFIB plasmid without any additional antimicrobial resistance genes.


2019 ◽  
Author(s):  
Yiqin Deng ◽  
Haidong Xu ◽  
Youlu Su ◽  
Songlin Liu ◽  
Liwen Xu ◽  
...  

Abstract Background Horizontal gene transfer (HGT), which is affected by environmental pollution and climate change, promotes genetic communication, changing bacterial pathogenicity and drug resistance. However, few studies have been conducted on the effect of HGT on the high pathogenicity and drug resistance of the opportunistic pathogen Vibrio harveyi .Results V. harveyi 345 that was multidrug resistant and infected Epinephelus oanceolutus was isolated from a diseased organism in Shenzhen, Southern China, an important and contaminated aquaculture area. Analysis of the entire genome sequence predicted 5,678 genes including 487 virulence genes contributing to bacterial pathogenesis and 25 antibiotic-resistance genes (ARGs) contributing to antimicrobial resistance. Five ARGs ( tetm , tetb , qnrs , dfra17 , and sul2 ) and one virulence gene (CU052_28670) on the pAQU-type plasmid p345-185, provided direct evidence for HGT. Comparative genome analysis of 31 V. harveyi strains indicated that 217 genes and 7 gene families, including a class C beta-lactamase gene, a virulence-associated protein D gene, and an OmpA family protein gene were specific to strain V. harveyi 345. These genes could contribute to HGT or be horizontally transferred from other bacteria to enhance the virulence or antibiotic resistance of 345. Mobile genetic elements in 71 genomic islands encoding virulence factors for three type III secretion proteins and 13 type VI secretion system proteins, and two incomplete prophage sequences were detected that could be HGT transfer tools. Evaluation of the complete genome of V. harveyi 345 and comparative genomics indicated genomic exchange, especially exchange of pathogenic genes and drug-resistance genes by HGT contributing to pathogenicity and drug resistance. Climate change and continued environmental deterioration are expected to accelerate the HGT of V. harveyi , increasing its pathogenicity and drug resistance.Conclusion This study provides timely information for further analysis of V. harveyi pathogenesis and antimicrobial resistance and developing pollution control measurements for coastal areas.


Nature ◽  
2001 ◽  
Vol 413 (6858) ◽  
pp. 848-852 ◽  
Author(s):  
J. Parkhill ◽  
G. Dougan ◽  
K. D. James ◽  
N. R. Thomson ◽  
D. Pickard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document