scholarly journals Functional Analysis of the Role of Toxoplasma gondii Nucleoside Triphosphate Hydrolases I and II in Acute Mouse Virulence and Immune Suppression

2016 ◽  
Vol 84 (7) ◽  
pp. 1994-2001 ◽  
Author(s):  
Philipp Olias ◽  
L. David Sibley

Bioluminescent reporter assays have been widely used to study the effect ofToxoplasma gondiion host gene expression. In the present study, we extend these studies by engineering novel reporter cell lines containing a gamma-activated sequence (GAS) element driving firefly luciferase (FLUC). In RAW264.7 macrophages,T. gondiitype I strain (GT1) infection blocked interferon gamma (IFN-γ)-induced FLUC activity to a significantly greater extent than infection by type II (ME49) and type III (CTG) strains. Quantitative trait locus (QTL) analysis of progeny from a prior genetic cross identified a genomic region on chromosome XII that correlated with the observed strain-dependent phenotype. This QTL region contains two isoforms of theT. gondiienzyme nucleoside triphosphate hydrolase (NTPase) that were the prime candidates for mediating the observed strain-specific effect. Using reverse genetic analysis we show that deletion of NTPase I from a type I strain (RH) background restored the higher luciferase levels seen in the type II (ME49) strain. Rather than an effect on IFN-γ-dependent transcription, our data suggest that NTPase I was responsible for the strain-dependent difference in FLUC activity due to hydrolysis of ATP. We further show that NTPases I and II were not essential for tachyzoite growthin vitroor virulence in mice. Our study reveals that althoughT. gondiiNTPases are not essential for immune evasion, they can affect ATP-dependent reporters. Importantly, this limitation was overcome using an ATP-independentGaussialuciferase, which provides a more appropriate reporter for use withT. gondiiinfection studies.

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yong Fu ◽  
Xia Cui ◽  
Sai Fan ◽  
Jing Liu ◽  
Xiao Zhang ◽  
...  

ABSTRACT Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sumit K. Matta ◽  
Kelley Patten ◽  
Quiling Wang ◽  
Bae-Hoon Kim ◽  
John D. MacMicking ◽  
...  

ABSTRACT Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet Toxoplasma gondii is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1−/− and Nox2−/− mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5−/− macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of T. gondii are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen. IMPORTANCE Toxoplasma infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling Toxoplasma or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting T. gondii infection. Using an avirulent strain of T. gondii, we highlight the importance of Nox complexes in conferring protection against parasite infection both in vitro and in vivo. We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of T. gondii. The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level.


2015 ◽  
Vol 83 (5) ◽  
pp. 2148-2155 ◽  
Author(s):  
Barbara A. Fox ◽  
David J. Bzik

Live attenuated vaccine strains, such as type I nonreplicating uracil auxotroph mutants, are highly effective in eliciting lifelong immunity to virulent acute infection byToxoplasma gondii. However, it is currently unknown whether vaccine-elicited immunity can provide protection against acute infection and also prevent chronic infection. To address this problem, we developed nonreverting, nonreplicating, live attenuated uracil auxotroph vaccine strains in the type II Δku80genetic background by targeting the deletion of the orotidine 5′-monophosphate decarboxylase (OMPDC) and uridine phosphorylase (UP) genes. Deletion ofOMPDCinduced a severe uracil auxotrophy with loss of replication, loss of virulence in mice, and loss of the ability to develop cysts and chronic infection. Vaccination of mice using type II Δku80Δompdcmutants stimulated a fully protective CD8+T cell-dependent immunity that prevented acute infection by type I and type II strains ofT. gondii, and this vaccination also severely reduced or prevented cyst formation after type II challenge infection. Nonreverting, nonreplicating, and non-cyst-forming Δompdcmutants provide new tools to examine protective immune responses elicited by vaccination with a live attenuated type II vaccine.


2013 ◽  
Vol 82 (2) ◽  
pp. 706-719 ◽  
Author(s):  
Emily E. Rosowski ◽  
Quynh P. Nguyen ◽  
Ana Camejo ◽  
Eric Spooner ◽  
Jeroen P. J. Saeij

ABSTRACTThe gamma interferon (IFN-γ) response, mediated by the STAT1 transcription factor, is crucial for host defense against the intracellular pathogenToxoplasma gondii, but prior infection withToxoplasmacan inhibit this response. Recently, it was reported that theToxoplasmatype II NTE strain prevents the recruitment of chromatin remodeling complexes containing Brahma-related gene 1 (BRG-1) to promoters of IFN-γ-induced secondary response genes such asCiitaand major histocompatibility complex class II genes in murine macrophages, thereby inhibiting their expression. We report here that a type I strain ofToxoplasmainhibits the expression of primary IFN-γ response genes such asIRF1through a distinct mechanism not dependent on the activity of histone deacetylases. Instead, infection with a type I, II, or III strain ofToxoplasmainhibits the dissociation of STAT1 from DNA, preventing its recycling and further rounds of STAT1-mediated transcriptional activation. This leads to increased IFN-γ-induced binding of STAT1 at theIRF1promoter in host cells and increased global IFN-γ-induced association of STAT1 with chromatin.Toxoplasmatype I infection also inhibits IFN-β-induced interferon-stimulated gene factor 3-mediated gene expression, and this inhibition is also linked to increased association of STAT1 with chromatin. The secretion of proteins into the host cell by a type I strain ofToxoplasmawithout complete parasite invasion is not sufficient to block STAT1-mediated expression, suggesting that the effector protein responsible for this inhibition is not derived from the rhoptries.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Barbara A. Fox ◽  
Rebekah B. Guevara ◽  
Leah M. Rommereim ◽  
Alejandra Falla ◽  
Valeria Bellini ◽  
...  

ABSTRACTToxoplasma gondiievades host immunity to establish a chronic infection. Here, we assessed the role of parasitophorous vacuole (PV) membrane (PVM)- and intravacuolar network (IVN) membrane-localized dense granule (GRA) proteins in the development of acute and chronicToxoplasmainfection. Deletion of PVM-associated GRA3, GRA7, GRA8, and GRA14 or IVN membrane-associated GRA2, GRA9, and GRA12 in the low-virulence type II Prugniaud (Pru) strain induced severe defects in the development of chronic-stage cystsin vivowithout affecting the parasite growth rate or the ability to differentiate into cystsin vitro. Acute virulence of the PruΔgra2, PruΔgra3, and PruΔgra4mutants was reduced but not abolished. In contrast, the PruΔgra12mutant was avirulent in mice and PruΔgra12parasites failed to establish a chronic infection. High-virulence type I strain RHΔgra12parasites also exhibited a major defect in acute virulence. In gamma interferon (IFN-γ)-activated macrophages, type I RHΔgra12and type II PruΔgra12parasites resisted the coating of the PVM with host immunity-related GTPases as effectively as the parental type I RHΔku80and type II PruΔku80strains, respectively. Despite this resistance, Δgra12PVs ultimately succumbed to IFN-γ-activated host cell innate immunity. Our findings uncover a key role for GRA12 in mediating resistance to host IFN-γ and reveal that many other IVN membrane-associated GRA proteins, as well as PVM-localized GRA proteins, play important roles in establishing chronic infection.IMPORTANCEToxoplasma gondiicysts reactivate during immune deficiency and cause fatal encephalitis. Parasite molecules that coordinate the development of acute and chronic infection are poorly characterized. Here, we show that many intravacuolar network membrane and parasitophorous vacuole membrane-associated dense granule (GRA) proteins orchestrate the development of chronic cystsin vivo. A subset of these GRA proteins also modulate acute virulence, and one protein that associates with the intravacuolar network membranes, namely GRA12, was identified as a major virulence factor required for parasite resistance to host gamma interferon (IFN-γ). Our results revealed that many parasitophorous vacuole membrane and intravacuolar network membrane-associated GRA proteins are essential for successful chronic infection.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Lanny Gov ◽  
Alborz Karimzadeh ◽  
Norikiyo Ueno ◽  
Melissa B. Lodoen

ABSTRACT   Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. IMPORTANCE Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a “master regulator” of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body.


2014 ◽  
Vol 82 (10) ◽  
pp. 4047-4055 ◽  
Author(s):  
Pedro Morgado ◽  
Dattanand M. Sudarshana ◽  
Lanny Gov ◽  
Katherine S. Harker ◽  
Tonika Lam ◽  
...  

ABSTRACTToxoplasma gondiiis an obligate intracellular parasite that can cause severe neurological disease in infected humans. CD40 is a receptor on macrophages that plays a critical role in controllingT. gondiiinfection. We examined the regulation of CD40 on the surface ofT. gondii-infected bone marrow-derived macrophages (BMdMs).T. gondiiinduced CD40 expression both at the transcript level and on the cell surface, and interestingly, the effect was parasite strain specific: CD40 levels were dramatically increased in type IIT. gondii-infected BMdMs compared to type I- or type III-infected cells. Type II induction of CD40 was specific to cells harboring intracellular parasites and detectable as early as 6 h postinfection (hpi) at the transcript level. CD40 protein expression peaked at 18 hpi. Using forward genetics with progeny from a type II × type III cross, we found that CD40 induction mapped to a region of chromosome X that included the gene encoding the dense granule protein 15 (GRA15). Using type I parasites stably expressing the type II allele ofGRA15(GRA15II), we found that type I GRA15IIparasites induced the expression of CD40 on infected cells in an NF-κB-dependent manner. In addition, stable expression of hemagglutinin-tagged GRA15IIin THP-1 cells resulted in CD40 upregulation in the absence of infection. Since CD40 signaling contributes to interleukin-12 (IL-12) production, we examined IL-12 from infected macrophages and found that CD40L engagement of CD40 amplified the IL-12 response in type II-infected cells. These data indicate that GRA15IIinduction of CD40 promotes parasite immunity through the production of IL-12.


1998 ◽  
Vol 88 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Yusuf Ersşahin ◽  
Saffet Mutluer ◽  
Sevgül Kocaman ◽  
Eren Demirtasş

Object. The authors reviewed and analyzed information on 74 patients with split spinal cord malformations (SSCMs) treated between January 1, 1980 and December 31, 1996 at their institution with the aim of defining and classifying the malformations according to the method of Pang, et al. Methods. Computerized tomography myelography was superior to other radiological tools in defining the type of SSCM. There were 46 girls (62%) and 28 boys (38%) ranging in age from less than 1 day to 12 years (mean 33.08 months). The mean age (43.2 months) of the patients who exhibited neurological deficits and orthopedic deformities was significantly older than those (8.2 months) without deficits (p = 0.003). Fifty-two patients had a single Type I and 18 patients a single Type II SSCM; four patients had composite SSCMs. Sixty-two patients had at least one associated spinal lesion that could lead to spinal cord tethering. After surgery, the majority of the patients remained stable and clinical improvement was observed in 18 patients. Conclusions. The classification of SSCMs proposed by Pang, et al., will eliminate the current chaos in terminology. In all SSCMs, either a rigid or a fibrous septum was found to transfix the spinal cord. There was at least one unrelated lesion that caused tethering of the spinal cord in 85% of the patients. The risk of neurological deficits resulting from SSCMs increases with the age of the patient; therefore, all patients should be surgically treated when diagnosed, especially before the development of orthopedic and neurological manifestations.


Parasitology ◽  
2013 ◽  
Vol 140 (14) ◽  
pp. 1768-1776 ◽  
Author(s):  
A. BURRELLS ◽  
P. M. BARTLEY ◽  
I. A. ZIMMER ◽  
S. ROY ◽  
A. C. KITCHENER ◽  
...  

SUMMARYToxoplasma gondiiis a zoonotic pathogen defined by three main clonal lineages (types I, II, III), of which type II is most common in Europe. Very few data exist on the prevalence and genotypes ofT. gondiiin the UK. Wildlife can act as sentinel species forT. gondiigenotypes present in the environment, which may subsequently be transmitted to livestock and humans. DNA was extracted from tissue samples of wild British carnivores, including 99 ferrets, 83 red foxes, 70 polecats, 65 mink, 64 badgers and 9 stoats. Parasite DNA was detected using a nested ITS1 PCR specific forT. gondii, PCR positive samples were subsequently genotyped using five PCR–RFLP markers.Toxoplasma gondiiDNA was detected within all these mammal species and prevalence varied from 6·0 to 44·4% depending on the host. PCR–RFLP genotyping identified type II as the predominant lineage, but type III and type I alleles were also identified. No atypical or mixed genotypes were identified within these animals. This study demonstrates the presence of alleles for all three clonal lineages with potential for transmission to cats and livestock. This is the first DNA-based study ofT. gondiiprevalence and genotypes across a broad range of wild British carnivores.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Shuai Wang ◽  
Ayah El-Fahmawi ◽  
David A. Christian ◽  
Qun Fang ◽  
Enrico Radaelli ◽  
...  

ABSTRACT Oral infection of C57BL/6J mice with Toxoplasma gondii results in a marked bacterial dysbiosis and the development of severe pathology in the distal small intestine that is dependent on CD4+ T cells and interferon gamma (IFN-γ). This dysbiosis and bacterial translocation contribute to the development of ileal pathology, but the factors that support the bloom of bacterial pathobionts are unclear. The use of microbial community profiling and shotgun metagenomics revealed that Toxoplasma infection induces a dysbiosis dominated by Enterobacteriaceae and an increased potential for nitrate respiration. In vivo experiments using bacterial metabolic mutants revealed that during this infection, host-derived nitrate supports the expansion of Enterobacteriaceae in the ileum via nitrate respiration. Additional experiments with infected mice indicate that the IFN-γ/STAT1/iNOS axis, while essential for parasite control, also supplies a pool of nitrate that serves as a source for anaerobic respiration and supports overgrowth of Enterobacteriaceae. Together, these data reveal a trade-off in intestinal immunity after oral infection of C57BL/6J mice with T. gondii, in which inducible nitric oxide synthase (iNOS) is required for parasite control, while this host enzyme is responsible for specific modification of the composition of the microbiome that contributes to pathology. IMPORTANCE Toxoplasma gondii is a protozoan parasite and a leading cause of foodborne illness. Infection is initiated when the parasite invades the intestinal epithelium, and in many host species, this leads to intense inflammation and a dramatic disruption of the normal microbial ecosystem that resides in the healthy gut (the so-called microbiome). One characteristic change in the microbiome during infection with Toxoplasma—as well as numerous other pathogens—is the overgrowth of Escherichia coli or similar bacteria and a breakdown of commensal containment leading to seeding of peripheral organs with gut bacteria and subsequent sepsis. Our findings provide one clear explanation for how this process is regulated, thereby improving our understanding of the relationship between parasite infection, inflammation, and disease. Furthermore, our results could serve as the basis for the development of novel therapeutics to reduce the potential for harmful bacteria to bloom in the gut during infection.


Sign in / Sign up

Export Citation Format

Share Document