scholarly journals Type II Toxoplasma gondii Induction of CD40 on Infected Macrophages Enhances Interleukin-12 Responses

2014 ◽  
Vol 82 (10) ◽  
pp. 4047-4055 ◽  
Author(s):  
Pedro Morgado ◽  
Dattanand M. Sudarshana ◽  
Lanny Gov ◽  
Katherine S. Harker ◽  
Tonika Lam ◽  
...  

ABSTRACTToxoplasma gondiiis an obligate intracellular parasite that can cause severe neurological disease in infected humans. CD40 is a receptor on macrophages that plays a critical role in controllingT. gondiiinfection. We examined the regulation of CD40 on the surface ofT. gondii-infected bone marrow-derived macrophages (BMdMs).T. gondiiinduced CD40 expression both at the transcript level and on the cell surface, and interestingly, the effect was parasite strain specific: CD40 levels were dramatically increased in type IIT. gondii-infected BMdMs compared to type I- or type III-infected cells. Type II induction of CD40 was specific to cells harboring intracellular parasites and detectable as early as 6 h postinfection (hpi) at the transcript level. CD40 protein expression peaked at 18 hpi. Using forward genetics with progeny from a type II × type III cross, we found that CD40 induction mapped to a region of chromosome X that included the gene encoding the dense granule protein 15 (GRA15). Using type I parasites stably expressing the type II allele ofGRA15(GRA15II), we found that type I GRA15IIparasites induced the expression of CD40 on infected cells in an NF-κB-dependent manner. In addition, stable expression of hemagglutinin-tagged GRA15IIin THP-1 cells resulted in CD40 upregulation in the absence of infection. Since CD40 signaling contributes to interleukin-12 (IL-12) production, we examined IL-12 from infected macrophages and found that CD40L engagement of CD40 amplified the IL-12 response in type II-infected cells. These data indicate that GRA15IIinduction of CD40 promotes parasite immunity through the production of IL-12.

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yong Fu ◽  
Xia Cui ◽  
Sai Fan ◽  
Jing Liu ◽  
Xiao Zhang ◽  
...  

ABSTRACT Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sumit K. Matta ◽  
Kelley Patten ◽  
Quiling Wang ◽  
Bae-Hoon Kim ◽  
John D. MacMicking ◽  
...  

ABSTRACT Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet Toxoplasma gondii is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1−/− and Nox2−/− mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5−/− macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of T. gondii are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen. IMPORTANCE Toxoplasma infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling Toxoplasma or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting T. gondii infection. Using an avirulent strain of T. gondii, we highlight the importance of Nox complexes in conferring protection against parasite infection both in vitro and in vivo. We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of T. gondii. The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Matthew A. Szaniawski ◽  
Adam M. Spivak ◽  
James E. Cox ◽  
Jonathan L. Catrow ◽  
Timothy Hanley ◽  
...  

ABSTRACTMacrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted.IMPORTANCEOur experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved changes in phosphorylation status but not in protein levels. Phosphorylation of SAMHD1 in macrophages occurred at least in part via CDK1. Tyrosine kinase inhibitors similarly induced SAMHD1 dephosphorylation, which protects macrophages from HIV-1 in a SAMHD1-dependent manner. SAMHD1 is a critical restriction factor regulating HIV-1 infection of macrophages.


1992 ◽  
Vol 284 (2) ◽  
pp. 399-405 ◽  
Author(s):  
K J Balazovich ◽  
E L McEwen ◽  
M L Lutzke ◽  
L A Boxer ◽  
T White

Human neutrophil protein kinase C (PKC) activity is inhibited by an endogenous protein found primarily in the pellet fraction from homogenized specific granules, which was both heat- and proteinase-sensitive [Balazovich, Smolen & Boxer (1986) J. Immunol. 137, 1665-1673]. We now report that two PKC isoenzymes and the endogenous PKC inhibitor, which we named PKC-I, were purified from human neutrophils. A neutrophil soluble fraction that was subjected to DEAE-Sephacel chromatography yielded highly enriched PKC because, by definition, enzymic activity was strictly dependent on Ca2+ and phosphatidylserine. Hydroxyapatite chromatography resolved two peaks of PKC activity. Type II and Type III PKC isoenzymes were each identified on Western blots by using isoenzyme-specific monoclonal antibodies. Unlike rat brain, from which PKC isoenzymes were also purified, Type I PKC was not detected in human neutrophils. Western blots indicated that both Type II and Type III PKC isoenzymes had molecular masses near 80 kDa. In agreement with other reports, PKC was autophosphorylated in vitro. PKC-I, an endogenous neutrophil inhibitor of PKC, was purified to apparent homogeneity by DEAE-Sephacel and S-400 Sephacel chromatography. PKC-I had a molecular mass of 41 kDa. PKC-I inhibited purified PKC activity stimulated by 1,2-diacylglycerols in a concentration-dependent manner, and inhibited PKC-dependent phosphorylation of proteins present in neutrophil cytosol.


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Tristan Wagner ◽  
Carl-Eric Wegner ◽  
Jörg Kahnt ◽  
Ulrich Ermler ◽  
Seigo Shima

ABSTRACT The phylogenetically diverse family of methanogenic archaea universally use methyl coenzyme M reductase (MCR) for catalyzing the final methane-forming reaction step of the methanogenic energy metabolism. Some methanogens of the orders Methanobacteriales and Methanococcales contain two isoenzymes. Comprehensive phylogenetic analyses on the basis of all three subunits grouped MCRs from Methanobacteriales and Methanococcales into three distinct types: (i) MCRs from Methanobacteriales, (ii) MCRs from Methanobacteriales and Methanococcales, and (iii) MCRs from Methanococcales. The first and second types contain MCR isoenzymes I and II from Methanothermobacter marburgensis, respectively; therefore, they were designated MCR type I and type II and accordingly; the third one was designated MCR type III. For comparison with the known MCR type I and type II structures, we determined the structure of MCR type III from Methanotorris formicicus and Methanothermococcus thermolithotrophicus. As predicted, the three MCR types revealed highly similar overall structures and virtually identical active site architectures reflecting the chemically challenging mechanism of methane formation. Pronounced differences were found at the protein surface with respect to loop geometries and electrostatic properties, which also involve the entrance of the active-site funnel. In addition, the C-terminal end of the γ-subunit is prolonged by an extra helix after helix γ8 in MCR type II and type III, which is, however, differently arranged in the two MCR types. MCR types I, II, and III share most of the posttranslational modifications which appear to fine-tune the enzymatic catalysis. Interestingly, MCR type III lacks the methyl-cysteine but possesses in subunit α of M. formicicus a 6-hydroxy-tryptophan, which thus far has been found only in the α-amanitin toxin peptide but not in proteins. IMPORTANCE Methyl coenzyme M reductase (MCR) represents a prime target for the mitigation of methane releases. Phylogenetic analyses of MCRs suggested several distinct sequence clusters; those from Methanobacteriales and Methanococcales were subdivided into three types: MCR type I from Methanobacteriales, MCR type II from Methanobacteriales and Methanococcales, and the newly designated MCR type III exclusively from Methanococcales. We determined the first X-ray structures for an MCR type III. Detailed analyses revealed substantial differences between the three types only in the peripheral region. The subtle modifications identified and electrostatic profiles suggested enhanced substrate binding for MCR type III. In addition, MCR type III from Methanotorris formicicus contains 6-hydroxy-tryptophan, a new posttranslational modification that thus far has been found only in the α-amanitin toxin.


2002 ◽  
Vol 195 (12) ◽  
pp. 1625-1633 ◽  
Author(s):  
Antonio Barragan ◽  
L. David Sibley

After oral ingestion, Toxoplasma gondii crosses the intestinal epithelium, disseminates into the deep tissues, and traverses biological barriers such as the placenta and the blood-brain barrier to reach sites where it causes severe pathology. To examine the cellular basis of these processes, migration of T. gondii was studied in vitro using polarized host cell monolayers and extracellular matrix. Transmigration required active parasite motility and the highly virulent type I strains consistently exhibited a superior migratory capacity than the nonvirulent type II and type III strains. Type I strain parasites also demonstrated a greater capacity for transmigration across mouse intestine ex vivo, and directly penetrated into the lamina propria and vascular endothelium. A subpopulation of virulent type I parasites exhibited a long distance migration (LDM) phenotype in vitro, that was not expressed by nonvirulent type II and type III strains. Cloning of parasites expressing the LDM phenotype resulted in substantial increase of migratory capacity in vitro and in vivo. The potential to up-regulate migratory capacity in T. gondii likely plays an important role in establishing new infections and in dissemination upon reactivation of chronic infections.


2005 ◽  
Vol 102 (4) ◽  
pp. 622-628 ◽  
Author(s):  
Andrew T. Parsa ◽  
Scott Wachhorst ◽  
Kathleen R. Lamborn ◽  
Michael D. Prados ◽  
Michael W. McDermott ◽  
...  

Object. The clinical outcome and treatment of adult patients with disseminated intracranial glioblastoma multiforme (GBM) is unclear. The objective in the present study was to assess the prognostic significance of disseminated intracranial GBM in adults at presentation and at the time of tumor progression. Methods. Clinical data from 1491 patients older than 17 years and harboring a GBM that had been diagnosed between 1988 and 1998 at the University of California at San Francisco neurooncology clinic were retrospectively reviewed. Dissemination of the GBM (126 patients) was determined based on Gd-enhanced magnetic resonance images. Classification of dissemination was as follows: Type I, single lesion with subependymal or subarachnoid spread; Type II, multifocal lesions without subependymal or subarachnoid spread; and Type III, multifocal lesions with subependymal or subarachnoid spread. Subgroups of patients were compared using Kaplan—Meier curves that depicted survival probability. The median postprogression survival (PPS), defined according to neuroimaging demonstrated dissemination, was 37 weeks for Type I (23 patients), 25 weeks for Type II (50 patients), and 10 weeks for Type III spread (19 patients). Patients with dissemination at first tumor progression (52 patients) overall had a shorter PPS than those in a control group with local progression, after adjusting for age, Karnofsky Performance Scale score, and time from tumor diagnosis to its progression (311 patients). When analyzed according to tumor dissemination type, PPS was significantly shorter in patients with Type II (33 patients, p < 0.01) and Type III spread (11 patients, p < 0.01) but not in those with Type I spread (eight patients, p = 0.18). Conclusions. Apparently, the presence of intracranial tumor dissemination on initial diagnosis does not in itself preclude aggressive treatment if a patient is otherwise well. A single focus of GBM that later demonstrates Type I dissemination on progression does not have a worse prognosis than a lesion that exhibits only local recurrence.


2000 ◽  
Vol 93 (6) ◽  
pp. 940-950 ◽  
Author(s):  
Frederick F. Lang ◽  
O. Kenneth Macdonald ◽  
Gregory N. Fuller ◽  
Franco DeMonte

Object. Primary meningiomas arising outside the intracranial compartment (primary extradural meningiomas [PEMs]) are rare tumors. To develop a better understanding of these tumors and to establish a comprehensive classification scheme for them, the authors analyzed a series of patients treated at the M. D. Anderson Cancer Center (MDACC) and reviewed all cases reported in the English-language literature since the inception of the use of computerized tomography (CT) scanning.Methods. Clinical records, results of radiographic studies, and histological slides were reviewed for all cases of PEM at MDACC. Demographic features, symptoms, tumor location, histological grade, and patient outcome were assessed in all cases. A comprehensive literature search identified 168 PEMs in 142 patients reported during the CT era. These reports were also analyzed for common features. Tumors for both data sets were classified as purely extracalvarial (Type I), purely calvarial (Type II), and calvarial with extracalvarial extension (Type III). Type II and Type III tumors were further categorized as convexity (C) or skull base (B) lesions.The incidence of PEMs at MDACC was 1.6%, which was consistent with the rate reported in the literature. In both data sets, the male/female ratio was nearly 1:1. The most common presenting symptom was a gradually expanding mass. The age of patients at diagnosis of PEM was bimodal, peaking during the second decade and during the fifth to seventh decades. In all MDACC cases and in 90% of those reported in the literature the PEMs were located in the head and neck. The majority of tumors originated in the skull (70%).In the MDACC series and in the literature review, the majority (67% and 89%, respectively) of tumors were histologically benign. Although fewer PEMs were malignant or atypical (33% at MDACC and 11% in the literature), their incidence was higher than that observed for primary intracranial meningiomas. Distant metastasis was not a common feature reported for patients with PEMs (6% in the literature).Outcome data were available in 96 of the cases culled from the CT-era literature. The combination of the MDACC data and the data obtained from the literature demonstrated that patients with benign Type IIB or Type IIIB lesions were more likely to experience recurrence than patients with benign Type IIC or Type IIIC tumors (26% compared with 0%, p < 0.05). The more aggressive atypical and malignant tumors were associated with a statistically significant higher death rate (29%) relative to benign tumors (4.8% death rate, p < 0.004).Conclusions. Defining a tumor as a PEM is dependent on the tumor's relation to the dura mater and the extent and direction of its growth. Classification of PEMs as calvarial or extracalvarial and as convexity or skull base lesions correlates well with clinical outcome.


2009 ◽  
Vol 206 (12) ◽  
pp. 2747-2760 ◽  
Author(s):  
Masahiro Yamamoto ◽  
Daron M. Standley ◽  
Seiji Takashima ◽  
Hiroyuki Saiga ◽  
Megumi Okuyama ◽  
...  

Infection by Toxoplasma gondii down-regulates the host innate immune responses, such as proinflammatory cytokine production, in a Stat3-dependent manner. A forward genetic approach recently demonstrated that the type II strain fails to suppress immune responses because of a potential defect in a highly polymorphic parasite-derived kinase, ROP16. We generated ROP16-deficient type I parasites by reverse genetics and found a severe defect in parasite-induced Stat3 activation, culminating in enhanced production of interleukin (IL) 6 and IL-12 p40 in the infected macrophages. Furthermore, overexpression of ROP16 but not ROP18 in mammalian cells resulted in Stat3 phosphorylation and strong activation of Stat3-dependent promoters. In addition, kinase-inactive ROP16 failed to activate Stat3. Comparison of type I and type II ROP16 revealed that a single amino acid substitution in the kinase domain determined the strain difference in terms of Stat3 activation. Moreover, ROP16 bound Stat3 and directly induced phosphorylation of this transcription factor. These results formally establish an essential and direct requirement of ROP16 in parasite-induced Stat3 activation and the significance of a single amino acid replacement in the function of type II ROP16.


2011 ◽  
Vol 208 (1) ◽  
pp. 195-212 ◽  
Author(s):  
Emily E. Rosowski ◽  
Diana Lu ◽  
Lindsay Julien ◽  
Lauren Rodda ◽  
Rogier A. Gaiser ◽  
...  

NF-κB is an integral component of the immune response to Toxoplasma gondii. Although evidence exists that T. gondii can directly modulate the NF-κB pathway, the parasite-derived effectors involved are unknown. We determined that type II strains of T. gondii activate more NF-κB than type I or type III strains, and using forward genetics we found that this difference is a result of the polymorphic protein GRA15, a novel dense granule protein which T. gondii secretes into the host cell upon invasion. A GRA15-deficient type II strain has a severe defect in both NF-κB nuclear translocation and NF-κB–mediated transcription. Furthermore, human cells expressing type II GRA15 also activate NF-κB, demonstrating that GRA15 alone is sufficient for NF-κB activation. Along with the rhoptry protein ROP16, GRA15 is responsible for a large part of the strain differences in the induction of IL-12 secretion by infected mouse macrophages. In vivo bioluminescent imaging showed that a GRA15-deficient type II strain grows faster compared with wild-type, most likely through its reduced induction of IFN-γ. These results show for the first time that a dense granule protein can modulate host signaling pathways, and dense granule proteins can therefore join rhoptry proteins in T. gondii’s host cell–modifying arsenal.


Sign in / Sign up

Export Citation Format

Share Document