scholarly journals The Intracellular Environment of Human Macrophages That Produce Nitric Oxide Promotes Growth of Mycobacteria

2013 ◽  
Vol 81 (9) ◽  
pp. 3198-3209 ◽  
Author(s):  
Joo-Yong Jung ◽  
Ranjna Madan-Lala ◽  
Maria Georgieva ◽  
Jyothi Rengarajan ◽  
Charles D. Sohaskey ◽  
...  

ABSTRACTNitric oxide (NO) is a diffusible radical gas produced from the activity of nitric oxide synthase (NOS). NOS activity in murine macrophages has a protective role against mycobacteria through generation of reactive nitrogen intermediates (RNIs). However, the production of NO by human macrophages has remained unclear due to the lack of sensitive reagents to detect NO directly. The purpose of this study was to investigate NO production and the consequence to mycobacteria in primary human macrophages. We found thatMycobacterium bovisBCG orMycobacterium tuberculosisinfection of human macrophages induced expression of NOS2 and NOS3 that resulted in detectable production of NO. Treatment with gamma interferon (IFN-γ),l-arginine, and tetrahydrobiopterin enhanced expression of NOS2 and NOS3 isoforms, as well as NO production. Both of these enzymes were shown to contribute to NO production. The maximal level of NO produced by human macrophages was not bactericidal or bacteriostatic toM. tuberculosisor BCG. The number of viable mycobacteria was increased in macrophages that produced NO, and this requires expression of nitrate reductase. AnnarGmutant ofM. tuberculosispersisted but was unable to grow in human macrophages. Taken together, these data (i) enhance our understanding of primary human macrophage potential to produce NO, (ii) demonstrate that the level of RNIs produced in response to IFN-γin vitrois not sufficient to limit intracellular mycobacterial growth, and (iii) suggest that mycobacteria may use RNIs to enhance their survival in human macrophages.

1997 ◽  
Vol 185 (7) ◽  
pp. 1261-1274 ◽  
Author(s):  
Tanya M. Scharton-Kersten ◽  
George Yap ◽  
Jeanne Magram ◽  
Alan Sher

The induction by IFN-γ of reactive nitrogen intermediates has been postulated as a major mechanism of host resistance to intracellular pathogens. To formally test this hypothesis in vivo, the course of Toxoplasma gondii infection was assessed in nitric oxide synthase (iNOS)−/− mice. As expected, macrophages from these animals displayed defective microbicidal activity against the parasite in vitro. Nevertheless, in contrast to IFN-γ−/− or IL-12 p40−/− animals, iNOSdeficient mice survived acute infection and controlled parasite growth at the site of inoculation. This early resistance was ablated by neutralization of IFN-γ or IL-12 in vivo and markedly diminished by depletion of neutrophils, demonstrating the existence of previously unappreciated NO independent mechanisms operating against the parasite during early infection. By 3-4 wk post infection, however, iNOS knockout mice did succumb to T. gondii. At that stage parasite expansion and pathology were evident in the central nervous system but not the periphery suggesting that the protective role of nitric oxide against this intracellular infection is tissue specific rather than systemic.


2003 ◽  
Vol 1 (3) ◽  
pp. 113-117 ◽  
Author(s):  
M. Myronidou ◽  
B. Kokkas ◽  
A. Kouyoumtzis ◽  
N. Gregoriadis ◽  
A. Lourbopoulos ◽  
...  

In these studies we investigated if losartan, an AT1- receptor blocker has any beneficial effect on NO production from the bovine aortic preparations in vitro while under stimulation from angiotensin II. Experiments were performed on intact specimens of bovine thoracic aorta, incubated in Dulbeco's MOD medium in a metabolic shaker for 24 hours under 95 % O2 and 5 % CO2 at a temperature of 37°C. We found that angiotensin II 1nM−10 μM does not exert any statistically significant action on NO production. On the contrary, angiotensin II 10nM increases the production of NO by 58.14 % (from 12.16 + 2.9 μm/l to 19.23 + 4.2 μm/l in the presence of losartan 1nM (P<0.05). Nitric oxide levels depend on both rate production and rate catabolism or chemical inactivation. Such an equilibrium is vital for the normal function of many systems including the cardiovascular one. The above results demonstrate that the blockade of AT1-receptors favors the biosynthesis of NO and indicate the protective role of losartan on the vascular wall.


2005 ◽  
Vol 12 (2) ◽  
pp. 113-124 ◽  
Author(s):  
Brian W. P. Seymour ◽  
Janice L. Peake ◽  
Kent E. Pinkerton ◽  
Viswanath P. Kurup ◽  
Laurel J. Gershwin

This study was performed to determine the effects of environmental tobacco smoke (ETS) on nitric oxide (NO) and immunoglobulin (Ig) production in a murine model of allergic bronchopulmonary aspergillosis (ABPA). Adult BALB/c mice were exposed to aged and diluted sidestream cigarette smoke from day 0 through day 43 to simulate “second-hand smoke”. During exposure, mice were sensitized to solubleAspergillus fumigatus(Af) antigen intranasally between day 14 and 24. All Af sensitized mice in ambient air (Af + AIR) made elevated levels of IgE, IgG1, IgM, IgG2a and IgA. Af sensitized mice housed in ETS (Af + ETS) made similar levels of immunoglobulins except for IgE that was significantly reduced in the serum and bronchoalveolar lavage (BAL). However, immunohistochemical evaluation of the lung revealed a marked accumulation of IgE positive cells in the lung parenchyma of these Af + ETS mice. LPS stimulation of BAL cells revealed elevated levels of NO in the Af + AIR group, which was further enhanced in the Af+ETS group.In vitrorestimulation of the BAL cells on day 45 showed a TH0 response with elevated levels of IL3, 4, 5, 10 and IFN-γ. However, by day 28 the response shifted such that TH2 cytokines increased while IFN-γ decreased. The Af + ETS group showed markedly reduced levels in all cytokines tested, including the inflammatory cytokine IL6, when compared to the Af+AIR group. These results demonstrate that ETS affects ABPA by further enhancing the NO production and reduces the TH2 and the inflammatory cytokines while altering the pattern of IgE responses.


2016 ◽  
Vol 84 (12) ◽  
pp. 3527-3541 ◽  
Author(s):  
Sue-jie Koo ◽  
Imran H. Chowdhury ◽  
Bartosz Szczesny ◽  
Xianxiu Wan ◽  
Nisha J. Garg

Trypanosoma cruziis the causative agent of chronic chagasic cardiomyopathy. Why macrophages (mφs), the early responders to infection, fail to achieve parasite clearance is not known. Mouse (RAW 264.7) and human (THP-1 and primary) mφs were infected for 3 h and 18 h withT. cruziTcI isolates, SylvioX10/4 (SYL, virulent) and TCC (nonpathogenic), which represent mφ stimulation and infection states, respectively. Mφs incubated with lipopolysaccharide and gamma interferon (LPS/IFN-γ) and with interleukin-4 (IL-4) were used as controls. We monitored the cytokine profile (using enzyme-linked immunosorbent assay [ELISA]), reactive oxygen species (ROS; fluorescent probes), nitric oxide (·NO; Griess assay), and metabolic state using a custom-designed mitoxosome array and Seahorse XF24 Analyzer. LPS/IFN-γ treatment of mφs elicited a potent increase in production of tumor necrosis alpha (TNF-α) at 3 h and of ROS and ·NO by 18 h. Upon SYL infection, murine mφs elicited an inflammatory cytokine profile (TNF-α ≫ TGF-β + IL-10) and low levels of ·NO and ROS production. LPS/IFN-γ treatment resulted in the inhibition of oxidative metabolism at the gene expression and functional levels and a switch to the glycolytic pathway in mφs, while IL-4-treated mφs utilized oxidative metabolism to meet energy demands. SYL infection resulted in an intermediate functional metabolic state with increased mitoxosome gene expression and glycolysis, and IFN-γ addition shut down the oxidative metabolism in SYL-infected mφs. Further, TCC- and SYL-stimulated mφs exhibited similar levels of cell proliferation and production of TNF-α and ROS, while TCC-stimulated mφs exhibited up to 2-fold-higher levels of oxidative metabolism and ·NO production than SYL-infected mφs. Inhibiting ATP-coupled O2consumption suppressed the ·NO generation in SYL-infected mφs. Mitochondrial oxygen consumption constitutes a mechanism for stimulating ·NO production in mφs duringT. cruziinfection. Enhancing the oxidative metabolism provides an opportunity for increased ·NO production and pathogen clearance by mφs to limit disease progression.


2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Elizabeth K. Naglak ◽  
Sandra G. Morrison ◽  
Richard P. Morrison

ABSTRACT Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia-specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo, natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response.


1998 ◽  
Vol 66 (3) ◽  
pp. 1017-1022 ◽  
Author(s):  
Sanae Sasaki ◽  
Tomisato Miura ◽  
Shinsuke Nishikawa ◽  
Kyogo Yamada ◽  
Mayuko Hirasue ◽  
...  

ABSTRACT This study was carried out to determine the role of nitric oxide (NO) in Staphylococcus aureus infection in mice. NO production in spleen cell cultures was induced by heat-killed S. aureus. Expression of mRNA of the inducible isoform of NO synthase (iNOS) was induced in the spleens and kidneys of S. aureus-infected mice. When mice were treated with monoclonal antibodies (MAbs) against tumor necrosis factor alpha (TNF-α) or gamma interferon (IFN-γ) before S. aureus infection, the induction of iNOS mRNA expression in the kidneys was inhibited. These MAbs also inhibited NO production in spleen cell cultures stimulated with heat-killed S. aureus. NO production in the spleen cell cultures and levels of urinary nitrate plus nitrite were suppressed by treatment with aminoguanidine (AG), a selective inhibitor of iNOS. The survival rates of AG-treated mice were significantly decreased by either lethal or sublethal S. aureusinfections. However, an effect of AG administration on bacterial growth was not observed in the spleens and kidneys of mice during either type of infection. Production of TNF-α and IFN-γ was not affected by AG treatment in vitro and in vivo. These results suggest that NO plays an important role in protection from lethality by the infection, but the protective role of NO in host resistance against S. aureusinfection was not proved. Moreover, our results show that TNF-α and IFN-γ regulate NO production while NO may not be involved in the regulation of the production of these cytokines during S. aureus infection.


2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Donald J. Steiner ◽  
Yoichi Furuya ◽  
Michael B. Jordan ◽  
Dennis W. Metzger

ABSTRACT Francisella tularensis causes lethal pneumonia following infection of the lungs by targeting macrophages for intracellular replication; however, macrophages stimulated with interferon gamma (IFN-γ) can resist infection in vitro. We therefore hypothesized that the protective effect of IFN-γ against F. tularensis in vivo requires macrophages receptive to stimulation. We found that the lethality of pulmonary F. tularensis LVS infection was exacerbated under conditions of alveolar macrophage depletion and in mice with a macrophage-specific defect in IFN-γ signaling (termed mice with macrophages insensitive to IFN-γ [MIIG mice]). We previously found that treatment with exogenous interleukin 12 (IL-12) protects against F. tularensis infection; this protection was lost in MIIG mice. MIIG mice also exhibited reduced neutrophil recruitment to the lungs following infection. Systemic neutrophil depletion was found to render wild-type mice highly sensitive to respiratory F. tularensis infection, and depletion beginning at 3 days postinfection led to more pronounced sensitivity than depletion beginning prior to infection. Furthermore, IL-12-mediated protection required NADPH oxidase activity. These results indicate that lung macrophages serve a critical protective role in respiratory F. tularensis LVS infection. Macrophages require IFN-γ signaling to mediate protection, which ultimately results in recruitment of neutrophils to further aid in survival from infection.


2015 ◽  
Vol 83 (10) ◽  
pp. 3800-3815 ◽  
Author(s):  
Parna Bhattacharya ◽  
Ranadhir Dey ◽  
Pradeep K. Dagur ◽  
Michael Kruhlak ◽  
Nevien Ismail ◽  
...  

Visceral leishmaniasis (VL) causes significant mortality and there is no effective vaccine. Previously, we have shown that genetically modifiedLeishmania donovaniparasites, here described as live attenuated parasites, induce a host protective adaptive immune response in various animal models. In this study, we demonstrate an innate immune response upon infection with live attenuated parasites in macrophages from BALB/c mice bothin vitroandin vivo. In vitroinfection of macrophages with live attenuated parasites (compared to that with wild-type [WT]L. donovaniparasites) induced significantly higher production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-12 [IL-12], gamma interferon [IFN-γ], and IL-6), chemokines (monocyte chemoattractant protein 1/CCL-2, macrophage inflammatory protein 1α/CCL-3, and IP-10), reactive oxygen species (ROS), and nitric oxide, while concomitantly reducing anti-inflammatory cytokine IL-10 and arginase-1 activities, suggesting a dominant classically activated/M1 macrophage response. The classically activated response in turn helps in presenting antigen to T cells, as observed with robust CD4+T cell activationin vitro. Similarly, parasitized splenic macrophages from live attenuated parasite-infected mice also demonstrated induction of an M1 macrophage phenotype, indicated by upregulation of IL-1β, TNF-α, IL-12, and inducible nitric oxide synthase 2 and downregulation of genes associated with the M2 phenotype, i.e., the IL-10, YM1, Arg-1, and MRC-1 genes, compared to WTL. donovani-infected mice. Furthermore, anex vivoantigen presentation assay showed macrophages from live attenuated parasite-infected mice induced higher IFN-γ and IL-2 but significantly less IL-10 production by ovalbumin-specific CD4+T cells, resulting in proliferation of Th1 cells. These data suggest that infection with live attenuated parasites promotes a state of classical activation (M1 dominant) in macrophages that leads to the generation of protective Th1 responses in BALB/c mice.


2002 ◽  
Vol 97 (3) ◽  
pp. 619-626 ◽  
Author(s):  
Tomohiro Kito ◽  
Etsushi Kuroda ◽  
Akira Yokota ◽  
Uki Yamashita

Object. In previous studies interferon-β (IFNβ) has been shown to suppress tumor growth. In this report, the antitumor effect of macrophages stimulated with IFNβ is investigated in murine gliomas in vitro. Methods. The authors examined the cytotoxic activity of IFNβ-stimulated peritoneal macrophages in glioma cells labeled with [3H]thymidine. The addition of IFNβ enhanced cytotoxic activity in gliomas as well as the nitric oxide (NO) production of macrophages in cocultures. Addition of NG-monomethyl-l-arginine (l-NMMA) and l-N6-(1-iminoethyl)-lysine, but not d-NMMA (an inactive analog of l-NMMA), blocked this cytotoxic activity. The addition of IFNβ had no direct effect on the growth of glioma cells. Because NO was not produced from macrophages treated with IFNβ alone and IFNβ-induced cytotoxic activity did not need cell-to-cell contact, the authors suspected that gliomas produce some soluble factors that act as cofactors for IFNβ-induced cytotoxic activity. Macrophages stimulated with IFNβ in the presence of glioma culture supernatants showed higher cytotoxicity against glioma cells than macrophages stimulated with IFNβ alone. Furthermore, NO was markedly produced by IFNβ-stimulated macrophages in the presence of glial culture supernatants. Conclusions. These data indicate that the antiglioma activity of IFNβ through macrophages is due to NO produced by macrophages and that glioma-derived soluble factors play a role as an essential cofactor in this activity.


2002 ◽  
Vol 70 (8) ◽  
pp. 4247-4253 ◽  
Author(s):  
A. Talvani ◽  
F. S. Machado ◽  
G. C. Santana ◽  
A. Klein ◽  
L. Barcelos ◽  
...  

ABSTRACT The production of nitric oxide (NO) by gamma interferon (IFN-γ)-activated macrophages is a major effector mechanism during experimental Trypanosoma cruzi infection. In addition to IFN-γ, chemoattractant molecules, such as platelet-activating factor (PAF) and CC chemokines, may also activate macrophages to induce NO and mediate the killing of T. cruzi in an NO-dependent manner. Here we investigated the ability of leukotriene B4 (LTB4) to induce the production of NO by macrophages infected with T. cruzi in vitro and whether NO mediated LTB4-induced parasite killing. The activation of T. cruzi-infected but not naive murine peritoneal macrophages with LTB4 induced the time- and concentration-dependent production of NO. In addition, low concentrations of LTB4 acted in synergy with IFN-γ to induce NO production. The NO produced mediated LTB4-induced microbicidal activity in macrophages, as demonstrated by the inhibitory effects of an inducible NO synthase inhibitor. LTB4-induced NO production and parasite killing were LTB4 receptor dependent and were partially blocked by a PAF receptor antagonist. LTB4 also induced significant tumor necrosis factor alpha (TNF-α) production, and blockade of TNF-α suppressed LTB4-induced NO release and parasite killing. A blockade of LTB4 or PAF receptors partially inhibited IFN-γ-induced NO and TNF-α production but not parasite killing. Finally, daily treatment of infected mice with CP-105,696 was accompanied by a significantly higher level of blood parasitemia, but not lethality, than that seen in vehicle-treated animals. In conclusion, our results suggest a role for LTB4 during experimental T. cruzi infection. Chemoattractant molecules such as LTB4 not only may play a major role in leukocyte migration into sites of inflammation in vivo but also, in the event of an infection, may play a relevant role in the activation of recruited leukocytes to kill the invading microorganism in an NO-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document