scholarly journals The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood

2017 ◽  
Vol 86 (1) ◽  
Author(s):  
Thomas A. Hooven ◽  
Andrew J. Catomeris ◽  
Maryam Bonakdar ◽  
Luke J. Tallon ◽  
Ivette Santana-Cruz ◽  
...  

ABSTRACTStreptococcus agalactiae(group BStreptococcus[GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cpsgenes identified as conditionally essential wasrelA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that therelAknockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent.

2016 ◽  
Vol 60 (3) ◽  
pp. 1702-1707 ◽  
Author(s):  
Parham Sendi ◽  
Martina Furitsch ◽  
Stefanie Mauerer ◽  
Carlos Florindo ◽  
Barbara C. Kahl ◽  
...  

Streptococcus agalactiae(group BStreptococcus[GBS]) is a leading cause of sepsis in neonates. The rate of invasive GBS disease in nonpregnant adults also continues to climb. Aminoglycosides alone have little or no effect on GBS, but synergistic killing with penicillin has been shownin vitro. High-level gentamicin resistance (HLGR) in GBS isolates, however, leads to the loss of a synergistic effect. We therefore performed a multicenter study to determine the frequency of HLGR GBS isolates and to elucidate the molecular mechanisms leading to gentamicin resistance. From eight centers in four countries, 1,128 invasive and colonizing GBS isolates were pooled and investigated for the presence of HLGR. We identified two strains that displayed HLGR (BSU1203 and BSU452), both of which carried theaacA-aphDgene, typically conferring HLGR. However, only one strain (BSU1203) also carried the previously described chromosomal gentamicin resistance transposon designated Tn3706. For the other strain (BSU452), plasmid purification and subsequent DNA sequencing resulted in the detection of plasmid pIP501 carrying a remnant of a Tn3family transposon. Its ability to confer HLGR was proven by transfer into anEnterococcus faecalisisolate. Conversely, loss of HLGR was documented after curing both GBS BSU452 and the transformedE. faecalisstrain from the plasmid. This is the first report showing plasmid-mediated HLGR in GBS. Thus, in our clinical GBS isolates, HLGR is mediated both chromosomally and extrachromosomally.


mBio ◽  
2018 ◽  
Vol 9 (6) ◽  
Author(s):  
Ryan S. Doster ◽  
Jessica A. Sutton ◽  
Lisa M. Rogers ◽  
David M. Aronoff ◽  
Jennifer A. Gaddy

ABSTRACT Streptococcus agalactiae, or group B Streptococcus (GBS), is a common perinatal pathogen. GBS colonization of the vaginal mucosa during pregnancy is a risk factor for invasive infection of the fetal membranes (chorioamnionitis) and its consequences such as membrane rupture, preterm labor, stillbirth, and neonatal sepsis. Placental macrophages, or Hofbauer cells, are fetally derived macrophages present within placental and fetal membrane tissues that perform vital functions for fetal and placental development, including supporting angiogenesis, tissue remodeling, and regulation of maternal-fetal tolerance. Although placental macrophages as tissue-resident innate phagocytes are likely to engage invasive bacteria such as GBS, there is limited information regarding how these cells respond to bacterial infection. Here, we demonstrate in vitro that placental macrophages release macrophage extracellular traps (METs) in response to bacterial infection. Placental macrophage METs contain proteins, including histones, myeloperoxidase, and neutrophil elastase similar to neutrophil extracellular traps, and are capable of killing GBS cells. MET release from these cells occurs by a process that depends on the production of reactive oxygen species. Placental macrophage METs also contain matrix metalloproteases that are released in response to GBS and could contribute to fetal membrane weakening during infection. MET structures were identified within human fetal membrane tissues infected ex vivo, suggesting that placental macrophages release METs in response to bacterial infection during chorioamnionitis. IMPORTANCE Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a common pathogen during pregnancy where infection can result in chorioamnionitis, preterm premature rupture of membranes (PPROM), preterm labor, stillbirth, and neonatal sepsis. Mechanisms by which GBS infection results in adverse pregnancy outcomes are still incompletely understood. This study evaluated interactions between GBS and placental macrophages. The data demonstrate that in response to infection, placental macrophages release extracellular traps capable of killing GBS. Additionally, this work establishes that proteins associated with extracellular trap fibers include several matrix metalloproteinases that have been associated with chorioamnionitis. In the context of pregnancy, placental macrophage responses to bacterial infection might have beneficial and adverse consequences, including protective effects against bacterial invasion, but they may also release important mediators of membrane breakdown that could contribute to membrane rupture or preterm labor.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 442
Author(s):  
Inés Reverón ◽  
Laura Plaza-Vinuesa ◽  
Laura Santamaría ◽  
Juan Carlos Oliveros ◽  
Blanca de las Rivas ◽  
...  

This study was aimed to gain new insights into the molecular mechanisms used by Lactobacillus plantarum WCFS1 to respond to hydroxytyrosol (HXT), one of the main and health-relevant plant phenolics present in olive oil. To this goal, whole genome transcriptomic profiling was used to better understand the contribution of differential gene expression in the adaptation to HXT by this microorganism. The transcriptomic profile reveals an HXT-triggered antioxidant response involving genes from the ROS (reactive oxygen species) resistome of L. plantarum, genes coding for H2S-producing enzymes and genes involved in the response to thiol-specific oxidative stress. The expression of a set of genes involved in cell wall biogenesis was also upregulated, indicating that this subcellular compartment was a target of HXT. The expression of several MFS (major facilitator superfamily) efflux systems and ABC-transporters was differentially affected by HXT, probably to control its transport across the membrane. L. plantarum transcriptionally reprogrammed nitrogen metabolism and involved the stringent response (SR) to adapt to HXT, as indicated by the reduced expression of genes involved in cell proliferation or related to the metabolism of (p)ppGpp, the molecule that triggers the SR. Our data have identified, at genome scale, the antimicrobial mechanisms of HXT action as well as molecular mechanisms that potentially enable L. plantarum to cope with the effects of this phenolic compound.


2020 ◽  
Vol 88 (7) ◽  
Author(s):  
Lamar Thomas ◽  
Laura Cook

ABSTRACT Streptococcus agalactiae (group B Streptococcus [GBS]) is an important cause of invasive infection in newborns, maternal women, and older individuals with underlying chronic illnesses. GBS has many mechanisms to adapt and survive in its host, and these mechanisms are often controlled via two-component signal transduction systems. In GBS, more than 20 distinct two-component systems (TCSs) have been classified to date, consisting of canonical TCSs as well as orphan and atypical sensors and regulators. These signal transducing systems are necessary for metabolic regulation, resistance to antibiotics and antimicrobials, pathogenesis, and adhesion to the mucosal surfaces to colonize the host. This minireview discusses the structures of these TCSs in GBS as well as how selected systems regulate essential cellular processes such as survival and colonization. GBS contains almost double the number of TCSs compared to the closely related Streptococcus pyogenes and Streptococcus pneumoniae, and while research on GBS TCSs has been increasing in recent years, no comprehensive reviews of these TCSs exist, making this review especially relevant.


2019 ◽  
Vol 8 (6) ◽  
Author(s):  
A. Bashir ◽  
Z. Zunita ◽  
F. F. A. Jesse ◽  
S. Z. Ramanoon ◽  
M. L. Mohd-Azmi

Streptococcus agalactiae, commonly known as group B streptococcus (GBS), is among the most implicated pathogens in bovine mastitis worldwide. Proper control measures can curb both economic and public health effects it may cause.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
M. Biagi ◽  
D. Lamm ◽  
K. Meyer ◽  
A. Vialichka ◽  
M. Jurkovic ◽  
...  

ABSTRACT The intrinsic L1 metallo- and L2 serine-β-lactamases in Stenotrophomonas maltophilia make it naturally multidrug resistant and difficult to treat. There is a need to identify novel treatment strategies for this pathogen, especially against isolates resistant to first-line agents. Aztreonam in combination with avibactam has demonstrated potential, although data on other aztreonam–β-lactamase inhibitor (BLI) combinations are lacking. Additionally, molecular mechanisms for reduced susceptibility to these combinations have not been explored. The objectives of this study were to evaluate and compare the in vitro activities and to understand the mechanisms of resistance to aztreonam in combination with avibactam, clavulanate, relebactam, and vaborbactam against S. maltophilia. A panel of 47 clinical S. maltophilia strains nonsusceptible to levofloxacin and/or trimethoprim-sulfamethoxazole were tested against each aztreonam-BLI combination via broth microdilution, and 6 isolates were then evaluated in time-kill analyses. Three isolates with various aztreonam-BLI MICs were subjected to whole-genome sequencing and quantitative reverse transcriptase PCR. Avibactam restored aztreonam susceptibility in 98% of aztreonam-resistant isolates, compared to 61, 71, and 15% with clavulanate, relebactam, and vaborbactam, respectively. The addition of avibactam to aztreonam resulted in a ≥2-log10-CFU/ml decrease at 24 h versus aztreonam alone against 5/6 isolates compared to 1/6 with clavulanate, 4/6 with relebactam, and 2/6 with vaborbactam. Molecular analyses revealed that decreased susceptibility to aztreonam-avibactam was associated with increased expression of genes encoding L1 and L2, as well as the efflux pump (smeABC). Aztreonam-avibactam is the most promising BLI-combination against multidrug-resistant S. maltophilia. Decreased susceptibility may be due to the combination of overexpressed β-lactamases and efflux pumps. Further studies evaluating this combination against S. maltophilia are warranted.


2003 ◽  
Vol 52 (4) ◽  
pp. 337-344 ◽  
Author(s):  
Fanrong Kong ◽  
Diana Martin ◽  
Gregory James ◽  
Gwendolyn L. Gilbert

This study forms part of the development of an integrated genotyping system for Streptococcus agalactiae (group B streptococcus, GBS) that can be used to study the population genetics of the organism and the pathogenesis and epidemiology of GBS disease. In recent previous studies, two sets of markers, the capsular polysaccharide synthesis (cps) gene cluster and surface protein antigen genes, have been used to assign molecular serotypes (MS) and protein-gene profiles (PGP) to more than 200 isolates. In the present study, five mobile genetic elements (MGE) have been used as a third set of markers, to characterize further 194 invasive isolates, recovered from blood or cerebrospinal fluid (CSF). Of these, 97 % contained one or more of the five MGE, the distribution of which was related to MS and PGP, as illustrated by MS III, which is divisible into four serosubtypes with different combinations of the MGE (or none). Fifty-six different genotypes and eight genetic clusters were identified, each with different combinations of the three sets of molecular markers. Five predominant genotypes (Ia-1, Ib-1, III-1, III-2 and V-1) contained 62 % of the isolates and five of the eight genetic clusters contained 92 % of the isolates. The 17 CSF isolates were relatively widely distributed between 10 genotypes and across seven of the eight clusters. Further study is needed to determine whether these genotypes or clusters share common markers of increased virulence. In future, comparison of invasive with colonizing strains of GBS may elucidate the significance of these findings.


mSphere ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Matthew J. Sullivan ◽  
Kelvin G. K. Goh ◽  
Glen C. Ulett

ABSTRACT Zinc is an essential trace element for normal bacterial physiology but, divergently, can intoxicate bacteria at high concentrations. Here, we define the molecular systems for Zn detoxification in Streptococcus agalactiae, also known as group B streptococcus, and examine the effects of resistance to Zn stress on virulence. We compared the growth of wild-type bacteria and mutants deleted for the Zn exporter, czcD, and the response regulator, sczA, using Zn-stress conditions in vitro. Macrophage antibiotic protection assays and a mouse model of disseminated infection were used to assess virulence. Global bacterial transcriptional responses to Zn stress were defined by RNA sequencing and quantitative reverse transcription-PCR. czcD and sczA enabled S. agalactiae to survive Zn stress, with the putative CzcD efflux system activated by SczA. Additional genes activated in response to Zn stress encompassed divalent cation transporters that contribute to regulation of Mn and Fe homeostasis. In vivo, the czcD-sczA Zn management axis supported virulence in the blood, heart, liver, and bladder. Additionally, several genes not previously linked to Zn stress in any bacterium, including, most notably, arcA for arginine deamination, also mediated resistance to Zn stress, representing a novel molecular mechanism of bacterial resistance to metal intoxication. Taken together, these findings show that S. agalactiae responds to Zn stress by sczA regulation of czcD, with additional novel mechanisms of resistance supported by arcA, encoding arginine deaminase. Cellular management of Zn stress in S. agalactiae supports virulence by facilitating bacterial survival in the host during systemic infection. IMPORTANCE Streptococcus agalactiae, also known as group B streptococcus, is an opportunistic pathogen that causes various diseases in humans and animals. This bacterium has genetic systems that enable zinc detoxification in environments of metal stress, but these systems remain largely undefined. Using a combination of genomic, genetic, and cellular assays, we show that this pathogen controls Zn export through CzcD to manage Zn stress and utilizes a system of arginine deamination never previously linked to metal stress responses in bacteria to survive metal intoxication. We show that these systems are crucial for survival of S. agalactiae in vitro during Zn stress and also enhance virulence during systemic infection in mice. These discoveries establish new molecular mechanisms of resistance to metal intoxication in bacteria; we suggest these mechanisms operate in other bacteria as a way to sustain microbial survival under conditions of metal stress, including in host environments.


2019 ◽  
Vol 57 (4) ◽  
Author(s):  
Isabella A. Tickler ◽  
Fred C. Tenover ◽  
Scott Dewell ◽  
Victoria M. Le ◽  
Rachel N. Blackman ◽  
...  

ABSTRACT Surveillance of circulating microbial populations is critical for monitoring the performance of a molecular diagnostic test. In this study, we characterized 31 isolates of Streptococcus agalactiae (group B Streptococcus [GBS]) from several geographic locations in the United States and Ireland that contain deletions in or adjacent to the region of the chromosome that encodes the hemolysin gene cfb, the region targeted by the Xpert GBS and GBS LB assays. PCR-negative, culture-positive isolates were recognized during verification studies of the Xpert GBS assay in 12 laboratories between 2012 and 2018. Whole-genome sequencing of 15 GBS isolates from 11 laboratories revealed four unique deletions of chromosomal DNA ranging from 181 bp to 49 kb. Prospective surveillance studies demonstrated that the prevalence of GBS isolates containing deletions in the convenience sample was <1% in three geographic locations but 7% in a fourth location. Among the 15 isolates with chromosomal deletions, multiple pulsed-field gel electrophoresis types were identified, one of which appears to be broadly dispersed across the United States.


2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Luchang Zhu ◽  
Prasanti Yerramilli ◽  
Layne Pruitt ◽  
Matthew Ojeda Saavedra ◽  
Concepcion C. Cantu ◽  
...  

ABSTRACT Streptococcus agalactiae (group B streptococcus, or GBS) is a common cause of bacteremia and sepsis in newborns, pregnant women, and immunocompromised patients. The molecular mechanisms used by GBS to survive and proliferate in blood are not well understood. Here, using a highly virulent GBS strain and transposon-directed insertion site sequencing (TraDIS), we performed genome-wide screens to discover novel GBS genes required for bacterial survival in human whole blood and plasma. The screen identified 85 and 41 genes that are required for GBS growth in whole blood and plasma, respectively. A common set of 29 genes was required in both whole blood and plasma. Targeted gene deletion confirmed that (i) genes encoding methionine transporter (metP) and manganese transporter (mtsA) are crucial for GBS survival in whole blood and plasma, (ii) gene W903_1820, encoding a small multidrug export family protein, contributes significantly to GBS survival in whole blood, (iii) the shikimate pathway gene aroA is essential for GBS growth in whole blood and plasma, and (iv) deletion of srr1, encoding a fibrinogen-binding adhesin, increases GBS survival in whole blood. Our findings provide new insight into the GBS-host interactions in human blood.


Sign in / Sign up

Export Citation Format

Share Document