scholarly journals Live Candida albicans Suppresses Production of Reactive Oxygen Species in Phagocytes

2008 ◽  
Vol 77 (1) ◽  
pp. 405-413 ◽  
Author(s):  
Melanie Wellington ◽  
Kristy Dolan ◽  
Damian J. Krysan

ABSTRACT Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774 cells, murine polymorphonuclear leukocytes (PMN), human monocytes, and human PMN treated with live C. albicans produced significantly less ROS than phagocytes treated with heat-killed C. albicans. Live C. albicans also suppressed ROS production in murine bone marrow-derived macrophages from C57BL/6 mice, but not from BALB/c mice. Live C. albicans also suppressed ROS in response to external stimuli. C. albicans and Candida glabrata suppressed ROS production by phagocytes, whereas Saccharomyces cerevisiae stimulated ROS production. The cell wall is the initial point of contact between Candida and phagocytes, but isolated cell walls from both heat-killed and live C. albicans stimulated ROS production. Heat-killed C. albicans has increased surface exposure of 1,3-β-glucan, a cell wall component that can stimulate phagocytes. To determine whether surface 1,3-β-glucan exposure accounted for the difference in ROS production, live C. albicans cells were treated with a sublethal dose of caspofungin to increase surface 1,3-β-glucan exposure. Caspofungin-treated C. albicans was fully able to suppress ROS production, indicating that suppression of ROS overrides stimulatory signals from 1,3-β-glucan. These studies indicate that live C. albicans actively suppresses ROS production in phagocytes in vitro, which may represent an important immune evasion mechanism.

2019 ◽  
Vol 103 (21-22) ◽  
pp. 8963-8975 ◽  
Author(s):  
Yanan Liu ◽  
Jing Lu ◽  
Jing Sun ◽  
Xiaoyu Zhu ◽  
Libang Zhou ◽  
...  

2007 ◽  
Vol 19 (1) ◽  
pp. 208
Author(s):  
N. W. K. Karja ◽  
K. Kikuchi ◽  
M. Ozawa ◽  
M. Fahrudin ◽  
T. Somfai ◽  
...  

Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), an enzyme required to catalyze the oxidation of NADPH to NADP during the metabolism of glucose via the pentose phosphate pathway (PPP), was considered as contributing to intracellular reactive oxygen species (ROS) production. Production of superoxide anion and H2O2 via NADPH oxidase has been reported on a rabbit blastocyst surface (Manes and Lai 1995 J. Reprod. Fertil. 104, 69–75). The objective of this study was to examine the effects on in vitro development and intracellular ROS content after the addition of diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase, or dehydroepiandrosterone (DHEA), an inhibitor of glucose-6-phosphate dehydrogenase (G6PDH), to culture medium during the early embryonic development of in vitro-produced (IVP) porcine embryos. To confirm that these inhibitors lead to reduction in NADPH concentration in the embryo and hence likely to be inhibiting the PPP, a brilliant cresyl blue (BCB) test was performed on Day 2 (the day of insemination = Day 0) of culture. Porcine cumulus–oocyte complexes were matured and fertilized in vitro as described previously (Kikuchi et al. 2002 Biol. Reprod. 66, 1033–1041). Prezumptive zygotes were then cultured in NCSU-37 supplemented with 5.5 mM glucose and DPI at concentrations of 0.5 or 1 nM or DHEA at concentrations of 10 or 100 �M (DPI-0.5, DPI-1, DHEA-10 and DHEA-100 groups, respectively) from Day 0 to Day 2 of culture. All of the embryos were cultured subsequently until Day 6 in NCSU-37 supplemented with only 5.5 mM glucose. Data were analyzed by ANOVA. On Day 6, the development to the blastocyst stage of embryos in DPI-0.5, DPI-1, DHEA-10, and DHEA-100 groups were 16.1, 17.6, 16.1, and 19.5%, respectively, which were not significantly different from that of the control group (17.5%) (n d 165 per group, 5 replicates). However, the mean cell number in blastocysts derived from DPI-1, DHEA-10, and DHEA-100 groups (40.8 � 2.3, 39.3 � 1.7, and 42.5 � 2.7, respectively) was significantly higher (P < 0.01) than those in the control (33.4 � 1.6) and DPI-0.5 (32.7 � 1.6) groups. At 20 min after an exposure to BCB, the percentage of BCB+ embryos in DPI-1, DHEA-10, and DHEA-100 groups (73.8, 79.9, and 77.8%, respectively) were significantly higher (P < 0.01) than those in the control and DPI-0.5 groups (42% and 53.9%, respectively) (n = 81-92 per group, 6 replicates), indicating that these two inhibitors effectively induce the reduction of NADPH concentration in the embryos. Moreover, the addition of DPI at 1 nM or DHEA at 10 or 100 �M significantly decreased the H2O2 content of Day 2 embryos as compared with control embryos (n = 48-53 per group, 7 replicates). These results suggest that the addition of either DPI or DHEA to the medium during the first 2 days of culture did not impair the development of the embryos to the blastocyst stage. Decrease of cellular ROS production in Day 2 embryos in this study is interpreted as a result of inhibition of the NADPH oxidase by DPI or of the G6PDH by DHEA.


2010 ◽  
Vol 108 (4) ◽  
pp. 780-787 ◽  
Author(s):  
Kent Sahlin ◽  
Irina G. Shabalina ◽  
C. Mikael Mattsson ◽  
Linda Bakkman ◽  
Maria Fernström ◽  
...  

Exercise-induced oxidative stress is important for the muscular adaptation to training but may also cause muscle damage. We hypothesized that prolonged exercise would increase mitochondrial production of reactive oxygen species (ROS) measured in vitro and that this correlates with oxidative damage. Eight male athletes (24–32 yr) performed ultraendurance exercise (kayaking/running/cycling) with an average work intensity of 55% V̇o2peak for 24 h. Muscle biopsies were taken from vastus lateralis before exercise, immediately after exercise, and after 28 h of recovery. The production of H2O2 was measured fluorometrically in isolated mitochondria with the Amplex red and peroxidase system. Succinate-supported mitochondrial H2O2 production was significantly increased after exercise (73% higher, P = 0.025) but restored to the initial level at recovery. Plasma level of free fatty acids (FFA) increased fourfold and exceeded 1.2 mmol/l during the last 6 h of exercise. Plasma FFA at the end of exercise was significantly correlated to mitochondrial ROS production ( r = 0.74, P < 0.05). Mitochondrial content of 4-hydroxy-nonenal-adducts (a marker of oxidative damage) was increased only after recovery and was not correlated with mitochondrial ROS production. Total thiol group level and glutathione peroxidase activity were elevated after recovery. In conclusion, ultraendurance exercise increases ROS production in isolated mitochondria, but this is reversed after 28 h recovery. Mitochondrial ROS production was not correlated with oxidative damage of mitochondrial proteins, which was increased at recovery but not immediately after exercise.


Reproduction ◽  
2013 ◽  
Vol 145 (5) ◽  
pp. 471-478 ◽  
Author(s):  
S Morado ◽  
P Cetica ◽  
M Beconi ◽  
J G Thompson ◽  
G Dalvit

The knowledge concerning redox and reactive oxygen species (ROS)-mediated regulation of early embryo development is scarce and remains controversial. The aim of this work was to determine ROS production and redox state during early in vitro embryo development in sperm-mediated and parthenogenetic activation of bovine oocytes. Sperm-mediated oocyte activation was carried out in IVF-modified synthetic oviductal fluid (mSOF) with frozen–thawed semen. Parthenogenetic activation was performed in TALP plus ionomycin and then in IVF-mSOF with 6-dimethylaminopurine plus cytochalasin B. Embryos were cultured in IVF-mSOF. ROS and redox state were determined at each 2-h interval (7–24 h from activation) by 2′,7′-dichlorodihydrofluorescein diacetate and RedoxSensor Red CC-1 fluorochromes respectively. ROS levels and redox state differed between activated and non-activated oocytes (P<0.05 by ANOVA). In sperm-activated oocytes, an increase was observed between 15 and 19 h (P<0.05). Conversely, in parthenogenetically activated oocytes, we observed a decrease at 9 h (P<0.05). In sperm-activated oocytes, ROS fluctuated throughout the 24 h, presenting peaks around 7, 19, and 24 h (P<0.05), while in parthenogenetic activation, peaks were detected at 7, 11, and 17 h (P<0.05). In the present work, we found clear distinctive metabolic patterns between normal and parthenogenetic zygotes. Oxidative activity and ROS production are an integral part of bovine zygote behavior, and defining a temporal pattern of change may be linked with developmental competence.


2007 ◽  
pp. S27-S32
Author(s):  
H Kolářová ◽  
R Bajgár ◽  
K Tománková ◽  
E Krestyn ◽  
L Doležal ◽  
...  

Several recent studies bring evidence of cell death enhancement in photodynamic compound loaded cells by ultrasonic treatment. There are a number of hypotheses suggesting the mechanism of the harmful ultrasonic effect. One of them considers a process in the activation of photosensitizers by ultrasonic energy. Because the basis of the photodynamic damaging effect on cells consists in the production of reactive oxygen species (ROS), we focused our study on whether the ultrasound can increase ROS production within cancer cells. Particularly, we studied ROS formation in ultrasound pretreated breast adenocarcinoma cells during photodynamic therapy in the presence of chloroaluminum phthalocyanine disulfonate (ClAlPcS2). Production of ROS was investigated by the molecular probe CM-H2DCFDA. Our results show that ClAlPcS2 induces higher ROS production in the ultrasound pretreated cell lines at a concentration of 100 microM and light intensity of 2 mW/cm2. We also observed a dependence of ROS production on photosensitizer concentration and light dose. These results demonstrate that the photodynamic effect on breast cancer cells can be enhanced by ultrasound pretreatment.


2014 ◽  
Vol 34 (12) ◽  
pp. 1907-1913 ◽  
Author(s):  
Kohji Abe ◽  
Nozomi Takai ◽  
Kazumi Fukumoto ◽  
Natsumi Imamoto ◽  
Misato Tonomura ◽  
...  

To assess reactive oxygen species (ROS) production by detecting the fluorescent oxidation product, hydroethidine has been used extensively. The present study was undertaken to evaluate the potential of the hydroethidine derivative as a radiotracer to measure in vivo brain ROS production. [3H]-labeled N-methyl-2,3-diamino-6-phenyl-dihydrophenanthridine ([3H]Hydromethidine) was synthesized, and evaluated using in vitro radical-induced oxidization and in vivo brain ROS production model. In vitro studies have indicated that [3H]Hydromethidine is converted to oxidized products by a superoxide radical (O2• -) and a hydroxyl radical (OH• -) but not hydrogen peroxide (H2O2). In vivo whole-body distribution study showed that [3H]Hydromethidine rapidly penetrated the brain and then was washed out in normal mice. Microinjection of sodium nitroprusside (SNP) into the brain was performed to produce ROS such as OH• - via Fenton reaction. A significant accumulation of radioactivity immediately after [3H]Hydromethidine injection was seen in the side of the brain treated with SNP (5 and 20 nmol) compared with that in the contralateral side. These results indicated that [3H]Hydromethidine freely penetrated into the brain where it was rapidly converted to oxidized forms, which were trapped there in response to the production of ROS. Thus, [3H]Hydromethidine should be useful as a radical trapping radiotracer in the brain.


2008 ◽  
Vol 295 (3) ◽  
pp. H1025-H1032 ◽  
Author(s):  
Baojian Xue ◽  
Yuanzi Zhao ◽  
Alan Kim Johnson ◽  
Meredith Hay

It has been shown that reactive oxygen species (ROS) contribute to the central effect of ANG II on blood pressure (BP). Recent studies have implicated an antihypertensive action of estrogen in ANG II-infused female mice. The present study used in vivo telemetry recording and in vitro living mouse brain slices to test the hypothesis that the central activation of estrogen receptors in male mice inhibits ANG II-induced hypertension via the modulation of the central ROS production. In male wild-type mice, the systemic infusion of ANG II induced a significant increase in BP (Δ30.1 ± 2.5 mmHg). Either central infusion of Tempol or 17β-estradiol (E2) attenuated the pressor effect of ANG II (Δ10.9 ± 2.3 and Δ4.5 ± 1.4 mmHg), and the protective effect of E2 was prevented by the coadministration of an estrogen receptor, antagonist ICI-182780 (Δ23.6 ± 3.1 mmHg). Moreover, the ganglionic blockade on day 7 after the start of ANG II infusions resulted in a smaller reduction of BP in central Tempol- and in central E2-treated males, suggesting that estrogen inhibits the central ANG II-induced increases in sympathetic outflow. In subfornical organ slices, the application of ANG II resulted in a 21.5 ± 2.5% increase in ROS production. The coadministration of irbesartan, an ANG II type 1 receptor antagonist, or the preincubation of brain slices with Tempol blocked ANG II-induced increases in ROS production (−1.8 ± 1.6% and −1.0 ± 1.8%). The ROS response to ANG II was also blocked by E2 (−3.2 ± 2.4%). The results suggest that the central actions of E2 are involved in the protection from ANG II-induced hypertension and that estrogen modulation of the ANG II-induced effects may involve interactions with ROS production.


2012 ◽  
Vol 12 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Claudia Jiménez-López ◽  
John R. Collette ◽  
Kimberly M. Brothers ◽  
Kelly M. Shepardson ◽  
Robert A. Cramer ◽  
...  

ABSTRACTThe interaction ofCandida albicanswith phagocytes of the host's innate immune system is highly dynamic, and its outcome directly impacts the progression of infection. While the switch to hyphal growth within the macrophage is the most obvious physiological response, much of the genetic response reflects nutrient starvation: translational repression and induction of alternative carbon metabolism. Changes in amino acid metabolism are not seen, with the striking exception of arginine biosynthesis, which is upregulated in its entirety during coculture with macrophages. Using single-cell reporters, we showed here that arginine biosynthetic genes are induced specifically in phagocytosed cells. This induction is lower in magnitude than during arginine starvationin vitroand is driven not by an arginine deficiency within the phagocyte but instead by exposure to reactive oxygen species (ROS). Curiously, these genes are induced in a narrow window of sublethal ROS concentrations.C. albicanscells phagocytosed by primary macrophages deficient in thegp91phoxsubunit of the phagocyte oxidase do not express theARGpathway, indicating that the induction is dependent on the phagocyte oxidative burst.C. albicans argpathway mutants are retarded in germ tube and hypha formation within macrophages but are not notably more sensitive to ROS. We also find that theARGpathway is regulated not by the general amino acid control response but by transcriptional regulators similar to theSaccharomyces cerevisiaeArgR complex. In summary, phagocytosis induces this single amino acid biosynthetic pathway in an ROS-dependent manner.


2009 ◽  
Vol 21 (4) ◽  
pp. 608 ◽  
Author(s):  
Sergio A. Morado ◽  
Pablo D. Cetica ◽  
Martha T. Beconi ◽  
Gabriel C. Dalvit

The role of reactive oxygen species (ROS) in the in vitro maturation (IVM) of oocytes remains controversial. The aim of the present study was to determine possible fluctuations in ROS production during bovine oocyte IVM in the presence of different modulators of ROS generation. Cumulus–oocyte complexes were cultured in medium 199 (control) in the absence or presence of 0.6 mm cysteine, 1mm 1-choro-2,4-dinitro benzene (CDNB), 2μm diphenyliodonium, 0.5 mm N-nitro-l-arginine methyl ester or 10 μm sodium nitroprusside (SNP) at 39°C, in 5% CO2 in humidified air for 22 h. In addition, the respiratory chain effectors potassium cyanide (KCN; 1 mm) and carbonyl cyanide m-chlorophenylhydrazone (0.42 μm) were used. Meiotic maturation was determined by the presence of MII. ROS production was evaluated in denuded oocytes at different time points as the ratio of 2′,7′-dichlorodihydrofluorescein diacetate (DCHF-DA) to fluorescein diacetate (FDA). ROS levels, expressed as DCHF-DA : FDA, fluctuated throughout the 22 h of maturation depending on the treatment applied. At 12 h incubation in the presence of KCN and SNP, ROS levels were increased, whereas ROS levels after 12 h in the presence of cysteine were reduced (P < 0.05). Both CDNB and SNP impaired meiotic progression. The higher metabolic activity demand during bovine oocyte maturation coincides with a concomitant reduction in ROS generation. These results suggest that 12 h would be a critical point for bovine oocyte IVM because it is closely related to the production of ROS at this time.


Sign in / Sign up

Export Citation Format

Share Document