scholarly journals Gut Adhesive Bacillus subtilis Spores as a Platform for Mucosal Delivery of Antigens

2014 ◽  
Vol 82 (4) ◽  
pp. 1414-1423 ◽  
Author(s):  
Milene Tavares Batista ◽  
Renata D. Souza ◽  
Juliano D. Paccez ◽  
Wilson B. Luiz ◽  
Ewerton L. Ferreira ◽  
...  

ABSTRACTBacillus subtilisspores have been used as safe and heat-resistant antigen delivery vectors. Nonetheless, the oral administration of spores typically induces weak immune responses to the passenger antigens, which may be attributed to the fast transit through the gastrointestinal tract. To overcome this limitation, we have developedB. subtilisspores capable of binding to the gut epithelium by means of expressing bacterial adhesins on the spore surface. The resulting spores bound toin vitrointestinal cells, showed a longer transit through the mouse intestinal tract, and interacted with Peyer's patch cells. The adhesive spores increased the systemic and secreted antibody responses to theStreptococcus mutansP1 protein, used as a model antigen, following oral, intranasal, and sublingual administration. Additionally, P1-specific antibodies efficiently inhibited the adhesion of the oral pathogenStreptococcus mutansto abiotic surfaces. These results support the use of gut-colonizingB. subtilisspores as a new platform for the mucosal delivery of vaccine antigens.

2012 ◽  
Vol 78 (7) ◽  
pp. 2120-2127 ◽  
Author(s):  
Lei Liu ◽  
Huichun Tong ◽  
Xiuzhu Dong

ABSTRACTComplex interspecies interactions occur constantly between oral commensals and the opportunistic pathogenStreptococcus mutansin dental plaque. Previously, we showed that oral commensalStreptococcus oligofermentanspossesses multiple enzymes for H2O2production, especially lactate oxidase (Lox), allowing it to out-competeS. mutans. In this study, through extensive biochemical and genetic studies, we identified a pyruvate oxidase (pox) gene inS. oligofermentans. Apoxdeletion mutant completely lost Pox activity, while ectopically expressedpoxrestored activity. Pox was determined to produce most of the H2O2in the earlier growth phase and log phase, while Lox mainly contributed to H2O2production in stationary phase. Bothpoxandloxwere expressed throughout the growth phase, while expression of theloxgene increased by about 2.5-fold when cells entered stationary phase. Since lactate accumulation occurred to a large degree in stationary phase, the differential Pox- and Lox-generated H2O2can be attributed to differential gene expression and substrate availability. Interestingly, inactivation ofpoxcauses a dramatic reduction in H2O2production from lactate, suggesting a synergistic action of the two oxidases in converting lactate into H2O2. In anin vitrotwo-species biofilm experiment, thepoxmutant ofS. oligofermentansfailed to inhibitS. mutanseven thoughloxwas active. In summary,S. oligofermentansdevelops a Pox-Lox synergy strategy to maximize its H2O2formation so as to win the interspecies competition.


2018 ◽  
Vol 200 (17) ◽  
Author(s):  
Olga Ramaniuk ◽  
Martin Převorovský ◽  
Jiří Pospíšil ◽  
Dragana Vítovská ◽  
Olga Kofroňová ◽  
...  

ABSTRACTThe σIsigma factor fromBacillus subtilisis a σ factor associated with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here, we provide a comprehensive characterization of this transcriptional regulator. By transcriptome sequencing (RNA-seq) of wild-type (wt) and σI-null strains at 37°C and 52°C, we identified ∼130 genes affected by the absence of σI. Further analysis revealed that the majority of these genes were affected indirectly by σI. The σIregulon, i.e., the genes directly regulated by σI, consists of 16 genes, of which eight (thedhbandykuoperons) are involved in iron metabolism. The involvement of σIin iron metabolism was confirmed phenotypically. Next, we set up anin vitrotranscription system and defined and experimentally validated the promoter sequence logo that, in addition to −35 and −10 regions, also contains extended −35 and −10 motifs. Thus, σI-dependent promoters are relatively information rich in comparison with most other promoters. In summary, this study supplies information about the least-explored σ factor from the industrially important model organismB. subtilis.IMPORTANCEIn bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons (i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σIregulon from the industrially important model Gram-positive bacteriumBacillus subtilis. We reveal that σIaffects expression of ∼130 genes, of which 16 are directly regulated by σI, including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σI-dependent transcription. This study thus provides a comprehensive view on this underexplored component of theB. subtilistranscription machinery.


2014 ◽  
Vol 82 (5) ◽  
pp. 1968-1981 ◽  
Author(s):  
Megan L. Falsetta ◽  
Marlise I. Klein ◽  
Punsiri M. Colonne ◽  
Kathleen Scott-Anne ◽  
Stacy Gregoire ◽  
...  

ABSTRACTStreptococcus mutansis often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC).S. mutansmay not act alone;Candida albicanscells are frequently detected along with heavy infection byS. mutansin plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhancedin vitroandin vivo. The presence ofC. albicansaugments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viableS. mutanscells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeableS. mutansmicrocolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Ourin vitrodata also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence withC. albicansinduces the expression of virulence genes inS. mutans(e.g.,gtfB,fabM). We also found thatCandida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.


2015 ◽  
Vol 197 (16) ◽  
pp. 2675-2684 ◽  
Author(s):  
Seram Nganbiton Devi ◽  
Brittany Kiehler ◽  
Lindsey Haggett ◽  
Masaya Fujita

ABSTRACTEntry into sporulation inBacillus subtilisis governed by a multicomponent phosphorelay, a complex version of a two-component system which includes at least three histidine kinases (KinA to KinC), two phosphotransferases (Spo0F and Spo0B), and a response regulator (Spo0A). Among the three histidine kinases, KinA is known as the major sporulation kinase; it is autophosphorylated with ATP upon starvation and then transfers a phosphoryl group to the downstream components in a His-Asp-His-Asp signaling pathway. Our recent study demonstrated that KinA forms a homotetramer, not a dimer, mediated by the N-terminal domain, as a functional unit. Furthermore, when the N-terminal domain was overexpressed in the starving wild-type strain, sporulation was impaired. We hypothesized that this impairment of sporulation could be explained by the formation of a nonfunctional heterotetramer of KinA, resulting in the reduced level of phosphorylated Spo0A (Spo0A∼P), and thus, autophosphorylation of KinA could occur intrans. To test this hypothesis, we generated a series ofB. subtilisstrains expressing homo- or heterogeneous KinA protein complexes consisting of various combinations of the phosphoryl-accepting histidine point mutant protein and the catalytic ATP-binding domain point mutant protein. We found that the ATP-binding-deficient protein was phosphorylated when the phosphorylation-deficient protein was present in a 1:1 stoichiometry in the tetramer complex, while each of the mutant homocomplexes was not phosphorylated. These results suggest that ATP initially binds to one protomer within the tetramer complex and then the γ-phosphoryl group is transmitted to another in atransfashion. We further found that the sporulation defect of each of the mutant proteins is complemented when the proteins are coexpressedin vivo. Taken together, thesein vitroandin vivoresults reinforce the evidence that KinA autophosphorylation is able to occur in atransfashion.IMPORTANCEAutophosphorylation of histidine kinases is known to occur by either thecis(one subunit of kinase phosphorylating itself within the multimer) or thetrans(one subunit of the multimer phosphorylates the other subunit) mechanism. The present study provided directin vivoandin vitroevidence that autophosphorylation of the major sporulation histidine kinase (KinA) is able to occur intranswithin the homotetramer complex. While the physiological and mechanistic significance of thetransautophosphorylation reaction remains obscure, understanding the detailed reaction mechanism of the sporulation kinase is the first step toward gaining insight into the molecular mechanisms of the initiation of sporulation, which is believed to be triggered by unknown factors produced under conditions of nutrient depletion.


2011 ◽  
Vol 18 (9) ◽  
pp. 1552-1561 ◽  
Author(s):  
Tomonori Hoshino ◽  
Yoshio Kondo ◽  
Kan Saito ◽  
Yutaka Terao ◽  
Nobuo Okahashi ◽  
...  

ABSTRACTIn the development of a component vaccine against caries, the catalytic region (CAT) and glucan-binding domain (GBD) of glucosyltransferase B (GtfB) fromStreptococcus mutanshave been employed as target antigens. These regions were adopted as primary targets because they theoretically include epitopes associated with enzyme function. However, their antigenicities have not been fully evaluated. Although there are many reports about successful vaccination using these components, the principle has not yet been put to practical use. For these reasons, we came to doubt the effectiveness of the epitopes in vaccine production and reevaluated the antigenic region of GtfB by usingin silicoanalyses combined within vitroandin vivoexperiments. The results suggested that the ca. 360-amino-acid variable region (VR) in the N terminus of GtfB is more reactive than CAT and GBD. This region isS. mutansand/or GtfB specific, nonconserved among other streptococcal Gtfs, and of unknown function. Immunization using an adenovirus vector-borne DNA vaccine confirmed that VR is an epitope that shows promise for the development of a caries vaccine.


2011 ◽  
Vol 78 (3) ◽  
pp. 778-785 ◽  
Author(s):  
Eric R. Pozsgai ◽  
Kris M. Blair ◽  
Daniel B. Kearns

ABSTRACTTransposons are mobile genetic elements bounded by insertion sequences that are recognized by a specific mobilizing transposase enzyme. The transposase may mobilize not only the insertion sequences but also intervening DNA.marineris a particularly efficient transposon for the random chromosomal integration of genes and insertional mutagenesis. Here, we modify an existingmarinertransposon, TnYLB, such that it can easily be genetically manipulated and introduced intoBacillus subtilis. We generate a series of three newmarinerderivatives that mobilize spectinomycin, chloramphenicol, and kanamycin antibiotic resistance cassettes. Furthermore, we generate a series of transposons with a strong, outward-oriented, optionally isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible promoter for the random overexpression of neighboring genes and a series of transposons with a promoterlesslacZgene for the random generation of transcriptional reporter fusions. We note that the modification of the base transposon is not restricted toB. subtilisand should be applicable to anymariner-compatible host organism, provided thatin vitromutagenesis or anin vivospecies-specific delivery vector is employed.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Kyung R. Min ◽  
Adriana Galvis ◽  
Brandon Williams ◽  
Ramanjaneyulu Rayala ◽  
Predrag Cudic ◽  
...  

ABSTRACT Despite continuous efforts to control cariogenic dental biofilms, very few effective antimicrobial treatments exist. In this study, we characterized the activity of the novel synthetic cyclic lipopeptide 4 (CLP-4), derived from fusaricidin, against the cariogenic pathogen Streptococcus mutans UA159. We determined CLP-4's MIC, minimum bactericidal concentration (MBC), and spontaneous resistance frequency, and we performed time-kill assays. Additionally, we assessed CLP-4's potential to inhibit biofilm formation and eradicate preformed biofilms. Our results demonstrate that CLP-4 has strong antibacterial activity in vitro and is a potent bactericidal agent with low spontaneous resistance frequency. At a low concentration of 5 μg/ml, CLP-4 completely inhibited S. mutans UA159 biofilm formation, and at 50 μg/ml, it reduced the viability of established biofilms by >99.99%. We also assessed CLP-4's cytotoxicity and stability against proteolytic digestion. CLP-4 withstood trypsin or chymotrypsin digestion even after treatment for 24 h, and our toxicity studies showed that CLP-4 effective concentrations had negligible effects on hemolysis and the viability of human oral fibroblasts. In summary, our findings showed that CLP-4 is a potent antibacterial and antibiofilm agent with remarkable stability and low nonspecific cytotoxicity. Hence, CLP-4 is a promising novel antimicrobial peptide with potential for clinical application in the prevention and treatment of dental caries.


2008 ◽  
Vol 15 (9) ◽  
pp. 1429-1435 ◽  
Author(s):  
Beatriz del Rio ◽  
Raymond J. Dattwyler ◽  
Miguel Aroso ◽  
Vera Neves ◽  
Luciana Meirelles ◽  
...  

ABSTRACT Mucosal immunization is advantageous over other routes of antigen delivery because it can induce both mucosal and systemic immune responses. Our goal was to develop a mucosal delivery vehicle based on bacteria generally regarded as safe, such as Lactobacillus spp. In this study, we used the Lyme disease mouse model as a proof of concept. We demonstrate that an oral vaccine based on live recombinant Lactobacillus plantarum protects mice from tick-transmitted Borrelia burgdorferi infection. Our method of expressing vaccine antigens in L. plantarum induces both systemic and mucosal immunity after oral administration. This platform technology can be applied to design oral vaccine delivery vehicles against several microbial pathogens.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Sandra Kunz ◽  
Anke Tribensky ◽  
Wieland Steinchen ◽  
Luis Oviedo-Bocanegra ◽  
Patricia Bedrunka ◽  
...  

ABSTRACT Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient. IMPORTANCE Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically.


2015 ◽  
Vol 60 (1) ◽  
pp. 126-135 ◽  
Author(s):  
Zhi Ren ◽  
Tao Cui ◽  
Jumei Zeng ◽  
Lulu Chen ◽  
Wenling Zhang ◽  
...  

ABSTRACTDental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation inStreptococcus mutansis promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibitingS. mutansbiofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein fromS. mutansresulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor.In vitroassays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation inS. mutansby selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, thein vivoanti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface cariesin vivowith a concomitant reduction in the percentage ofS. mutansin the animals' dental plaque (P< 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity ofS. mutans.


Sign in / Sign up

Export Citation Format

Share Document