scholarly journals Therapeutic Role of Interleukin 22 in Experimental Intra-abdominal Klebsiella pneumoniae Infection in Mice

2016 ◽  
Vol 84 (3) ◽  
pp. 782-789 ◽  
Author(s):  
Mingquan Zheng ◽  
William Horne ◽  
Jeremy P. McAleer ◽  
Derek Pociask ◽  
Taylor Eddens ◽  
...  

Interleukin 22 (IL-22) is an IL-10-related cytokine produced by T helper 17 (Th17) cells and other immune cells that signals via IL-22 receptor alpha 1 (IL-22Ra1), which is expressed on epithelial tissues, as well as hepatocytes. IL-22 has been shown to have hepatoprotective effects that are mediated by signal transducer and activator of transcription 3 (STAT3) signaling. However, it is unclear whether IL-22 can directly regulate antimicrobial programs in the liver. To test this hypothesis, hepatocyte-specific IL-22Ra1 knockout (Il22Ra1Hep−/−) and Stat3 knockout (Stat3Hep−/−) mice were generated and subjected to intra-abdominal infection withKlebsiella pneumoniae, which results in liver injury and necrosis. We found that overexpression of IL-22 or therapeutic administration of recombinant IL-22 (rIL-22), given 2 h postinfection, significantly reduced the bacterial burden in both the liver and spleen. The antimicrobial activity of rIL-22 required hepaticIl22Ra1andStat3. Serum from rIL-22-treated mice showed potent bacteriostatic activity againstK. pneumoniae, which was dependent on lipocalin 2 (LCN2). However,in vivo, rIL-22-induced antimicrobial activity was only partially reduced in LCN2-deficient mice. We found that rIL-22 also induced serum amyloid A2 (SAA2) and that SAA2 had anti-K. pneumoniaebactericidal activityin vitro. These results demonstrate that IL-22, through IL-22Ra1 and STAT3 singling, can induce intrinsic antimicrobial activity in the liver, which is due in part to LCN2 and SAA2. Therefore, IL-22 may be a useful adjunct in treating hepatic and intra-abdominal infections.

2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Mélanie A. C. Ikeh ◽  
Paul L. Fidel ◽  
Mairi C. Noverr

ABSTRACTPolymicrobial intra-abdominal infections (IAI) involvingCandida albicansandStaphylococcus aureusare associated with severe morbidity and mortality (∼80%). Our laboratory discovered that the immunomodulatory eicosanoid prostaglandin E2(PGE2) plays a key role in the lethal inflammatory response during polymicrobial IAI using a mouse model of infection. In studies designed to uncover key PGE2biosynthesis/signaling components involved in the response, selective eicosanoid enzyme inhibitors and receptor antagonists were selected and prescreened for antimicrobial activity againstC. albicansorS. aureus. Unexpectedly, we found that the EP4receptor antagonist L-161,982 had direct growth-inhibitory effects onS. aureusin vitroat the physiological concentration required to block the PGE2interaction with EP4. This antimicrobial activity was observed with methicillin-sensitiveS. aureusand methicillin-resistantS. aureus(MRSA) strains, with the MIC and minimum bactericidal concentration values for planktonic cells being 50 μg/ml and 100 μg/ml, respectively. In addition, L-161,982 inhibitedS. aureusbiofilm formation and had activity against preformed mature biofilms. More importantly, treatment of mice with L-161,982 following intraperitoneal inoculation with a lethal dose of MRSA significantly reduced the bioburden and enhanced survival. Furthermore, L-161,982 protected mice against the synergistic lethality induced by coinfection withC. albicansandS. aureus. The antimicrobial activity of L-161,982 is independent of EP4receptor inhibitory activity; an alternative EP4receptor antagonist exerted no antimicrobial or protective effects. Taken together, these findings demonstrate that L-161,982 has potent antimicrobial activity against MRSA and may represent a significant therapeutic alternative in improving the prognosis of mono- or polymicrobial infections involving MRSA.


2014 ◽  
Vol 59 (3) ◽  
pp. 1797-1801 ◽  
Author(s):  
Ryan K. Shields ◽  
M. Hong Nguyen ◽  
Brian A. Potoski ◽  
Ellen G. Press ◽  
Liang Chen ◽  
...  

ABSTRACTTreatment failures of a carbapenem-colistin regimen among patients with bacteremia due to sequence type 258 (ST258), KPC-2-producingKlebsiella pneumoniaewere significantly more likely if both agents were inactivein vitro, as defined by a colistin MIC of >2 μg/ml and the presence of either a majorompK36porin mutation (guanine and alanine insertions at amino acids 134 and 135 [ins aa 134–135 GD], IS5promoter insertion [P= 0.007]) or a doripenem MIC of >8 μg/ml (P= 0.01). MajorompK36mutations among KPC-K. pneumoniaestrains are important determinants of carbapenem-colistin responsesin vitroandin vivo.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Stefanie Dichtl ◽  
Egon Demetz ◽  
David Haschka ◽  
Piotr Tymoszuk ◽  
Verena Petzer ◽  
...  

ABSTRACTWe have recently shown that the catecholamine dopamine regulates cellular iron homeostasis in macrophages. As iron is an essential nutrient for microbes, and intracellular iron availability affects the growth of intracellular bacteria, we studied whether dopamine administration impacts the course ofSalmonellainfections. Dopamine was found to promote the growth ofSalmonellaboth in culture and within bone marrow-derived macrophages, which was dependent on increased bacterial iron acquisition. Dopamine administration to mice infected withSalmonella entericaserovar Typhimurium resulted in significantly increased bacterial burdens in liver and spleen, as well as reduced survival. The promotion of bacterial growth by dopamine was independent of the siderophore-binding host peptide lipocalin-2. Rather, dopamine enhancement of iron uptake requires both the histidine sensor kinase QseC and bacterial iron transporters, in particular SitABCD, and may also involve the increased expression of bacterial iron uptake genes. Deletion or pharmacological blockade of QseC reduced but did not abolish the growth-promoting effects of dopamine. Dopamine also modulated systemic iron homeostasis by increasing hepcidin expression and depleting macrophages of the iron exporter ferroportin, which enhanced intracellular bacterial growth.Salmonellalacking all central iron uptake pathways failed to benefit from dopamine treatment. These observations are potentially relevant to critically ill patients, in whom the pharmacological administration of catecholamines to improve circulatory performance may exacerbate the course of infection with siderophilic bacteria.IMPORTANCEHere we show that dopamine increases bacterial iron incorporation and promotesSalmonellaTyphimurium growth bothin vitroandin vivo. These observations suggest the potential hazards of pharmacological catecholamine administration in patients with bacterial sepsis but also suggest that the inhibition of bacterial iron acquisition might provide a useful approach to antimicrobial therapy.


2016 ◽  
Vol 60 (5) ◽  
pp. 3001-3006 ◽  
Author(s):  
Akihiro Morinaka ◽  
Yuko Tsutsumi ◽  
Keiko Yamada ◽  
Yoshihiro Takayama ◽  
Shiro Sakakibara ◽  
...  

ABSTRACTGram-negative bacteria are evolving to produce β-lactamases of increasing diversity that challenge antimicrobial chemotherapy. OP0595 is a new diazabicyclooctane serine β-lactamase inhibitor which acts also as an antibiotic and as a β-lactamase-independent β-lactam “enhancer” againstEnterobacteriaceae. Here we determined the optimal concentration of OP0595 in combination with piperacillin, cefepime, and meropenem, in addition to the antibacterial activity of OP0595 alone and in combination with cefepime, inin vitrotime-kill studies and anin vivoinfection model against five strains of CTX-M-15-positiveEscherichia coliand five strains of KPC-positiveKlebsiella pneumoniae. An OP0595 concentration of 4 μg/ml was found to be sufficient for an effective combination with all three β-lactam agents. In bothin vitrotime-kill studies and anin vivomodel of infection, cefepime-OP0595 showed stronger efficacy than cefepime alone against all β-lactamase-positive strains tested, whereas OP0595 alone showed weaker or no efficacy. Taken together, these data indicate that combinational use of OP0595 and a β-lactam agent is important to exert the antimicrobial functions of OP0595.


2020 ◽  
Author(s):  
Elizabeth A. Lilly ◽  
Mélanie A. C. Ikeh ◽  
Paul L. Fidel ◽  
Mairi C. Noverr

AbstractOur laboratory recently reported that the EP4 receptor antagonist, L-161,982, had direct growth-inhibitory effects on Staphylococcus aureus in vitro and in vivo, reducing microbial burden and providing significant protection against lethality in models of S. aureus monomicrobial and polymicrobial intra-abdominal infection. This antimicrobial activity was observed with both methicillin-sensitive and methicillin-resistant S. aureus (MRSA), as well as other Gram-positive bacteria. The antimicrobial activity of L-161,982 was independent of EP4 receptor inhibitory activity. In this study, we investigated the mechanism of action (MOA) of L-161,982, which contains a sulfonamide functional group. However, results demonstrate L-161,982 does not affect folate synthesis (sulfonamide MOA), oxidative stress, or membrane permeability. Instead, our results suggest that the inhibitor works via effects on inhibition of the electron transport chain (ETC). Similar to other ETC inhibitors, L-161,982 exposure results in a small colony size variant phenotype and inhibition of pigmentation, as well as significantly reduced hemolytic activity, and ATP production. In addition, L-161,982 potentiated the antimicrobial activity of another ETC inhibitor and inhibition was partially rescued by supplementation with nutrients required for ETC auxotrophs. Taken together, these findings demonstrate that L-161,982 exerts antimicrobial activity against MRSA via inhibition the ETC, representing a new member of a potentially novel antimicrobial drug class.


mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Kasturi Banerjee ◽  
Michael P. Motley ◽  
Elizabeth Diago-Navarro ◽  
Bettina C. Fries

ABSTRACT Capsular polysaccharide (CPS) heterogeneity within carbapenem-resistant Klebsiella pneumoniae (CR-Kp) strain sequence type 258 (ST258) must be considered when developing CPS-based vaccines. Here, we sought to characterize CPS-specific antibody responses elicited by CR-Kp-infected patients. Plasma and bacterial isolates were collected from 33 hospital patients with positive CR-Kp cultures. Isolate capsules were typed by wzi sequencing. Reactivity and measures of efficacy of patient antibodies were studied against 3 prevalent CR-Kp CPS types (wzi29, wzi154, and wzi50). High IgG titers against wzi154 and wzi50 CPS were documented in 79% of infected patients. Patient-derived (PD) IgGs agglutinated CR-Kp and limited growth better than naive IgG and promoted phagocytosis of strains across the serotype isolated from their donors. Additionally, poly-IgG from wzi50 and wzi154 patients promoted phagocytosis of nonconcordant CR-Kp serotypes. Such effects were lost when poly-IgG was depleted of CPS-specific IgG. Additionally, mice infected with wzi50, wzi154, and wzi29 CR-Kp strains preopsonized with wzi50 patient-derived IgG exhibited lower lung CFU than controls. Depletion of wzi50 antibodies (Abs) reversed this effect in wzi50 and wzi154 infections, whereas wzi154 Ab depletion reduced poly-IgG efficacy against wzi29 CR-Kp. We are the first to report cross-reactive properties of CPS-specific Abs from CR-Kp patients through both in vitro and in vivo models. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is a rapidly emerging public health threat that can cause fatal infections in up to 50% of affected patients. Due to its resistance to nearly all antimicrobials, development of alternate therapies like antibodies and vaccines is urgently needed. Capsular polysaccharides constitute important targets, as they are crucial for Klebsiella pneumoniae pathogenesis. Capsular polysaccharides are very diverse and, therefore, studying the host’s capsule-type specific antibodies is crucial to develop effective anti-CPS immunotherapies. In this study, we are the first to characterize humoral responses in infected patients against carbapenem-resistant Klebsiella pneumoniae expressing different wzi capsule types. This study is the first to report the efficacy of cross-reactive properties of CPS-specific Abs in both in vitro and in vivo models.


2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Elizabeth Diago-Navarro ◽  
Isabel Calatayud-Baselga ◽  
Donglei Sun ◽  
Camille Khairallah ◽  
Inderjit Mann ◽  
...  

ABSTRACT Hypervirulent Klebsiella pneumoniae (hvKp) strains are predicted to become a major threat in Asia if antibiotic resistance continues to spread. Anticapsular antibodies (Abs) were developed because disseminated infections caused by hvKp are associated with significant morbidity and mortality, even with antibiotic-sensitive strains. K1-serotype polysaccharide capsules (K1-CPS) are expressed by the majority of hvKp strains. In this study, K1-CPS-specific IgG Abs were generated by conjugation of K1-CPS to immunogenic anthrax protective antigen (PA) protein. Opsonophagocytic efficacy was measured in vitro and in vivo by intravital microscopy in murine livers. In vivo protection was tested in murine models, including a novel model for dissemination in hvKp-colonized mice. Protective efficacy of monoclonal antibodies (MAbs) 4C5 (IgG1) and 19A10 (IgG3) was demonstrated both in murine sepsis and pulmonary infection. In hvKp-colonized mice, MAb treatment significantly decreased dissemination of hvKp from the gut to mesenteric lymph nodes and organs. Intravital microscopy confirmed efficient opsonophagocytosis and clearance of bacteria from the liver. In vitro studies demonstrate that MAbs work predominantly by promoting FcR-mediated phagocytosis but also indicate that MAbs enhance the release of neutrophil extracellular traps (NETs). In anticipation of increasing antibiotic resistance, we propose further development of these and other Klebsiella-specific MAbs for therapeutic use.


2012 ◽  
Vol 56 (5) ◽  
pp. 2759-2760 ◽  
Author(s):  
Olivier Mimoz ◽  
Nicolas Grégoire ◽  
Laurent Poirel ◽  
Manuella Marliat ◽  
William Couet ◽  
...  

ABSTRACTA lethal peritonitis model was induced in mice with aKlebsiella pneumoniaeisolate producing the carbapenemase OXA-48. Administration of a single dose (up to 100 mg/kg) of the antibiotic piperacillin-tazobactam, imipenem-cilastatin, ertapenem, or cefotaxime had little or no impact on lethality. Ceftazidime had the highest efficacyin vivo, which mirrored itsin vitroactivity; this was not the case for carbapenems. Therefore, ceftazidime may be recommended for the treatment of infections due to OXA-48 producers if they do not coproduce an extended-spectrum β-lactamase or a plasmid-mediated AmpC cephalosporinase.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Ying Sun ◽  
Xueyuan Liao ◽  
Zhigang Huang ◽  
Yaliu Xie ◽  
Yanbin Liu ◽  
...  

ABSTRACT This study aimed to evaluate the antimicrobial activity of the novel monosulfactam 0073 against multidrug-resistant Gram-negative bacteria in vitro and in vivo and to characterize the mechanisms underlying 0073 activity. The in vitro activities of 0073, aztreonam, and the combination with avibactam were assessed by MIC and time-kill assays. The safety of 0073 was evaluated using 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and acute toxicity assays. Murine thigh infection and pneumonia models were employed to define in vivo efficacy. A penicillin-binding protein (PBP) competition assay and confocal microscopy were conducted. The inhibitory action of 0073 against β-lactamases was evaluated by the half-maximal inhibitory concentration (IC50), and resistance development was evaluated via serial passage. The monosulfactam 0073 showed promising antimicrobial activity against Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates producing metallo-β-lactamases (MBLs) and serine β-lactamases. In preliminary experiments, compound 0073 exhibited safety both in vitro and in vivo. In the murine thigh infection model and the pneumonia models in which infection was induced by P. aeruginosa and Klebsiella pneumoniae, 0073 significantly reduced the bacterial burden. Compound 0073 targeted several PBPs and exerted inhibitory effects against some serine β-lactamases. Finally, 0073 showed a reduced propensity for resistance selection compared with that of aztreonam. The novel monosulfactam 0073 exhibited increased activity against β-lactamase-producing Gram-negative organisms compared with the activity of aztreonam and showed good safety profiles both in vitro and in vivo. The underlying mechanisms may be attributed to the affinity of 0073 for several PBPs and its inhibitory activity against some serine β-lactamases. These data indicate that 0073 represents a potential treatment for infections caused by β-lactamase-producing multidrug-resistant bacteria.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Jun Taek Oh ◽  
Cara Cassino ◽  
Raymond Schuch

ABSTRACTCF-301 (exebacase) is a recombinantly produced bacteriophage-derived lysin (cell wall hydrolase) and is the first agent of this class to enter clinical development in the United States for treating bacteremia including endocarditis due toStaphylococcus aureus. Whereas rapid bactericidal activity is the hallmarkin vitroandin vivoresponse to CF-301 at exposures higher than the MIC, prolonged antimicrobial activity, mediated by cell wall damage, is predicted at concentrations less than the MIC. In the current study, a series ofin vitropharmacodynamic parameters, including the postantibiotic effect (PAE), postantibiotic sub-MIC effect (PA-SME), and sub-MIC effect (SME), were studied to determine how short-duration and sub-MIC CF-301 exposures affect the growth of surviving staphylococci and extend its antimicrobial activity. Mean PAE, PA-SME, and SME values up to 4.8, 9.3, and 9.8 h, respectively, were observed against 14 staphylococcal strains tested in human serum; growth delays were extended by 6 h in the presence of daptomycin. Exposures to CF-301 at sub-MIC levels as low as 0.001× to 0.01× MIC (∼1 to 10 ng/ml) resulted in aberrant cell wall ultrastructure, increased membrane permeability, dissipation of membrane potential, and inhibition of virulence phenotypes, including agglutination and biofilm formation. A mouse thigh infection model designed to study the PAE was used to confirm our findings and demonstratein vivogrowth delays of ≥19.3 h. Our findings suggest that at CF-301 concentrations less than the MIC during therapeutic use, sustained reductions in bacterial fitness and virulence may substantially enhance efficacy.


Sign in / Sign up

Export Citation Format

Share Document