scholarly journals Dopamine Is a Siderophore-Like Iron Chelator That PromotesSalmonella entericaSerovar Typhimurium Virulence in Mice

mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Stefanie Dichtl ◽  
Egon Demetz ◽  
David Haschka ◽  
Piotr Tymoszuk ◽  
Verena Petzer ◽  
...  

ABSTRACTWe have recently shown that the catecholamine dopamine regulates cellular iron homeostasis in macrophages. As iron is an essential nutrient for microbes, and intracellular iron availability affects the growth of intracellular bacteria, we studied whether dopamine administration impacts the course ofSalmonellainfections. Dopamine was found to promote the growth ofSalmonellaboth in culture and within bone marrow-derived macrophages, which was dependent on increased bacterial iron acquisition. Dopamine administration to mice infected withSalmonella entericaserovar Typhimurium resulted in significantly increased bacterial burdens in liver and spleen, as well as reduced survival. The promotion of bacterial growth by dopamine was independent of the siderophore-binding host peptide lipocalin-2. Rather, dopamine enhancement of iron uptake requires both the histidine sensor kinase QseC and bacterial iron transporters, in particular SitABCD, and may also involve the increased expression of bacterial iron uptake genes. Deletion or pharmacological blockade of QseC reduced but did not abolish the growth-promoting effects of dopamine. Dopamine also modulated systemic iron homeostasis by increasing hepcidin expression and depleting macrophages of the iron exporter ferroportin, which enhanced intracellular bacterial growth.Salmonellalacking all central iron uptake pathways failed to benefit from dopamine treatment. These observations are potentially relevant to critically ill patients, in whom the pharmacological administration of catecholamines to improve circulatory performance may exacerbate the course of infection with siderophilic bacteria.IMPORTANCEHere we show that dopamine increases bacterial iron incorporation and promotesSalmonellaTyphimurium growth bothin vitroandin vivo. These observations suggest the potential hazards of pharmacological catecholamine administration in patients with bacterial sepsis but also suggest that the inhibition of bacterial iron acquisition might provide a useful approach to antimicrobial therapy.

2012 ◽  
Vol 80 (10) ◽  
pp. 3650-3659 ◽  
Author(s):  
Ruchi Pandey ◽  
G. Marcela Rodriguez

ABSTRACTIron is an essential, elusive, and potentially toxic nutrient for most pathogens, includingMycobacterium tuberculosis. Due to the poor solubility of ferric iron under aerobic conditions, free iron is not found in the host.M. tuberculosisrequires specialized iron acquisition systems to replicate and cause disease. It also depends on a strict control of iron metabolism and intracellular iron levels to prevent iron-mediated toxicity. Under conditions of iron sufficiency,M. tuberculosisrepresses iron acquisition and induces iron storage, suggesting an important role for iron storage proteins in iron homeostasis.M. tuberculosissynthesizes two iron storage proteins, a ferritin (BfrB) and a bacterioferritin (BfrA). The individual contributions of these proteins to the adaptive response ofM. tuberculosisto changes in iron availability are not clear. By generating individual knockout strains ofbfrAandbfrB, the contribution of each one of these proteins to the maintenance of iron homeostasis was determined. The effect of altered iron homeostasis, resulting from impaired iron storage, on the resistance ofM. tuberculosistoin vitroandin vivostresses was examined. The results show that ferritin is required to maintain iron homeostasis, whereas bacterioferritin seems to be dispensable for this function.M. tuberculosislacking ferritin suffers from iron-mediated toxicity, is unable to persist in mice, and, most importantly, is highly susceptible to killing by antibiotics, showing that endogenous oxidative stress can enhance the antibiotic killing of this important pathogen. These results are relevant for the design of new therapeutic strategies againstM. tuberculosis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qingqing Gao ◽  
Xi Li ◽  
Senyan Su ◽  
Lei Yang ◽  
Song Gao

Avian pathogenic Escherichia coli (APEC), widely spread among poultry, is well-known to cause colibacillosis in chickens, which results in significant losses in poultry industry. The ability to uptake iron in the extra-intestinal environment is prerequisite for APEC survival. For adaptation to the low-iron environments, the bacteria have evolved multiple iron acquisition systems to ensure optimal iron uptake. However, many components of these iron acquisition pathways are still not clearly known. An in silico analysis of the genome of a septicemic APEC O1 strain E516 identified two putative iron transport genes homologous to the c2515 and c2516 genes from uropathogenic E. coli CFT073. In this study, we constructed the single and double gene deletion mutants, and studied their biological characteristic and pathogenic traits through in vitro and in vivo assays. Reverse transcriptase PCR (RT-PCR) analyses demonstrated that the mutations destroying the reading frame of the target genes abolished their transcription. Deletion of the single or double genes of c2515 and c2516 in APEC E516 weakened its ability to produce siderophore. Consistently, the mutants exhibited growth defect under iron-depleted conditions and the intracellular iron levels in the mutants were decreased in comparison with that of the wild-type (WT). Cell infection assays showed that the iron uptake defective mutants were more easily eliminated by the macrophage. Inactivation of the c2515 and c2516 genes affected bacterial colonization of chicken tissues, as well as the 50% lethal dose levels compared with the WT strain. Moreover, the expression levels of several iron uptake-related genes were significantly decreased in the double-deletion mutant. In total, the c2515 and c2516 may involve in siderophore-mediated iron uptake and participate in the pathogenesis of APEC O1 strain E516.


1992 ◽  
Vol 262 (2) ◽  
pp. R220-R224 ◽  
Author(s):  
E. A. Farcich ◽  
E. H. Morgan

Iron uptake from transferrin by a variety of cells and tissues of homozygous Belgrade laboratory rats was compared with heterozygotes, and normal and iron-deficient Wistar rats. In all cases the results for homozygous Belgrade rats were lower than for the other animals. The maximal rate of iron uptake by fibroblasts cultured in vitro and iron passage to homozygous fetuses in utero was less than 60% of control values. In vivo studies of 15-day-old Belgrade rats revealed a defect in the homozygotes with reduced iron transfer to heart, liver, brain, and femurs. In addition, adult Belgrade laboratory rats had impaired intestinal iron absorption compared with the genetically normal animals. It is concluded that the defect in iron metabolism in the Belgrade laboratory rat is a ubiquitous one that affects transport of iron across membranes of many types of cells, resulting in low intracellular iron levels. This suggests that the genetic defect leads to a widely expressed abnormality in the structure and/or function of a membrane carrier for iron.


2015 ◽  
Vol 197 (18) ◽  
pp. 2930-2940 ◽  
Author(s):  
Theresa D. Ho ◽  
Craig D. Ellermeier

ABSTRACTClostridium difficileis an anaerobic, Gram-positive, spore-forming opportunistic pathogen and is the most common cause of hospital-acquired infectious diarrhea. Although iron acquisition in the host is a key to survival of bacterial pathogens, high levels of intracellular iron can increase oxidative damage. Therefore, expression of iron acquisition mechanisms is tightly controlled by transcriptional regulators. We identified aC. difficilehomologue of the master bacterial iron regulator Fur. Using targetron mutagenesis, we generated afurinsertion mutant ofC. difficile. To identify the genes regulated by Fur inC. difficile, we used microarray analysis to compare transcriptional differences between thefurmutant and the wild type when grown in high-iron medium. Thefurmutant had increased expression of greater than 70 transcriptional units. Using quantitative reverse transcriptase PCR (qRT-PCR), we analyzed several of the Fur-regulated genes identified by the microarray and verified that they are both iron and Fur regulated inC. difficile. Among those Fur- and iron-repressed genes wereC. difficilegenes encoding 7 putative cation transport systems of different classes. We found that Fur was able to bind the DNA upstream of three Fur-repressed genes in electrophoretic mobility shift assays. We also demonstrate that expression of Fur-regulated putative iron acquisition systems was increased duringC. difficileinfection using the hamster model. Our data suggest thatC. difficileexpresses multiple iron transport mechanisms in response iron depletionin vitroandin vivo.IMPORTANCEClostridium difficileis the most common cause of hospital-acquired infectious diarrhea and has been recently classified as an “urgent” antibiotic resistance threat by the CDC. To survive and cause disease, most bacterial pathogens must acquire the essential enzymatic cofactor iron. While import of adequate iron is essential for most bacterial growth, excess intracellular iron can lead to extensive oxidative damage. Thus, bacteria must regulate iron import to maintain iron homeostasis. We demonstrate here thatC. difficileregulates expression of several putative iron acquisition systems using the transcriptional regulator Fur. These import mechanisms are induced under iron-limiting conditionsin vitroand duringC. difficileinfection of the host. This suggests that during aC. difficileinfection, iron availability is limitedin vivo.


2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Federica Runci ◽  
Valentina Gentile ◽  
Emanuela Frangipani ◽  
Giordano Rampioni ◽  
Livia Leoni ◽  
...  

ABSTRACTAcinetobacter baumanniiis an important nosocomial pathogen. Mechanisms that allowA. baumanniito cause human infection are still poorly understood. Iron is an essential nutrient for bacterial growthin vivo, and the multiplicity of iron uptake systems inA. baumanniisuggests that iron acquisition contributes to the ability ofA. baumanniito cause infection. In Gram-negative bacteria, active transport of ferrisiderophores and heme relies on the conserved TonB-ExbB-ExbD energy-transducing complex, while active uptake of ferrous iron is mediated by the Feo system. TheA. baumanniigenome invariably contains threetonBgenes (tonB1,tonB2, andtonB3), whose role in iron uptake is poorly understood. Here, we generatedA. baumanniimutants with knockout mutations in thefeoand/ortonBgene. We report thattonB3is essential forA. baumanniigrowth under iron-limiting conditions, whereastonB1,tonB2, andfeoBappear to be dispensable for ferric iron uptake.tonB3deletion resulted in reduced intracellular iron content despite siderophore overproduction, supporting a key role of TonB3 in iron uptake. In contrast to the case fortonB1andtonB2, the promoters oftonB3andfeocontain functional Fur boxes and are upregulated in iron-poor media. Both TonB3 and Feo systems are required for growth in complement-free human serum and contribute to resistance to the bactericidal activity of normal human serum, but only TonB3 appears to be essential for virulence in insect and mouse models of infection. Our findings highlight a central role of the TonB3 system forA. baumanniipathogenicity. Hence, TonB3 represents a promising target for novel antibacterial therapies and for the generation of attenuated vaccine strains.


2019 ◽  
Vol 87 (12) ◽  
Author(s):  
Bianca Bontempi Batista ◽  
Renato Elias Rodrigues de Souza Santos ◽  
Rafael Ricci-Azevedo ◽  
José Freire da Silva Neto

ABSTRACT Bacteria use siderophores to scavenge iron from environmental or host sources. The iron acquisition systems of Chromobacterium violaceum, a ubiquitous environmental bacterium that can cause infections in humans, are still unknown. In this work, we demonstrated that C. violaceum produces putative distinct endogenous siderophores, here named chromobactin and viobactin, and showed that they are each required for iron uptake and virulence. An in silico analysis in the genome of C. violaceum revealed that genes related to synthesis and uptake of chromobactin (cba) and viobactin (vba) are located within two secondary-metabolite biosynthetic gene clusters. Using a combination of gene deletions and siderophore detection assays, we revealed that chromobactin and viobactin are catecholate siderophores synthesized from the common precursor 2,3-dihydroxybenzoate (2,3-DHB) on two nonribosomal peptide synthetase (NRPS) enzymes (CbaF and VbaF) and taken up by two TonB-dependent receptors (CbuA and VbuA). Infection assays in mice revealed that both the synthesis and the uptake of chromobactin or viobactin are required for the virulence of C. violaceum, since only the mutant strains that do not produce any siderophores or are unable to take up both of them were attenuated for virulence. In addition, the mutant strain unable to take up both siderophores showed a pronounced attenuation of virulence in vivo and reduced neutrophil extracellular trap (NET) formation in in vitro assays, suggesting that extracellularly accumulated siderophores modulate the host immune response. Overall, our results revealed that C. violaceum uses distinct endogenous siderophores for iron uptake and its establishment in the host.


Author(s):  
Wen-Dai Bao ◽  
Pei Pang ◽  
Xiao-Ting Zhou ◽  
Fan Hu ◽  
Wan Xiong ◽  
...  

AbstractIron homeostasis disturbance has been implicated in Alzheimer’s disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of ferroptosis in the pathogenesis of AD remains elusive. Here, we report that ferroportin1 (Fpn), the only identified mammalian nonheme iron exporter, was downregulated in the brains of APPswe/PS1dE9 mice as an Alzheimer’s mouse model and Alzheimer’s patients. Genetic deletion of Fpn in principal neurons of the neocortex and hippocampus by breeding Fpnfl/fl mice with NEX-Cre mice led to AD-like hippocampal atrophy and memory deficits. Interestingly, the canonical morphological and molecular characteristics of ferroptosis were observed in both Fpnfl/fl/NEXcre and AD mice. Gene set enrichment analysis (GSEA) of ferroptosis-related RNA-seq data showed that the differentially expressed genes were highly enriched in gene sets associated with AD. Furthermore, administration of specific inhibitors of ferroptosis effectively reduced the neuronal death and memory impairments induced by Aβ aggregation in vitro and in vivo. In addition, restoring Fpn ameliorated ferroptosis and memory impairment in APPswe/PS1dE9 mice. Our study demonstrates the critical role of Fpn and ferroptosis in the progression of AD, thus provides promising therapeutic approaches for this disease.


2013 ◽  
Vol 57 (10) ◽  
pp. 5138-5140 ◽  
Author(s):  
Shichun Lun ◽  
Haidan Guo ◽  
John Adamson ◽  
Justin S. Cisar ◽  
Tony D. Davis ◽  
...  

ABSTRACTMycobactin biosynthesis inMycobacterium tuberculosisfacilitates iron acquisition, which is required for growth and virulence. The mycobactin biosynthesis inhibitor salicyl-AMS [5′-O-(N-salicylsulfamoyl)adenosine] inhibitsM. tuberculosisgrowthin vitrounder iron-limited conditions. Here, we conducted a single-dose pharmacokinetic study and a monotherapy study of salicyl-AMS with mice. Intraperitoneal injection yielded much better pharmacokinetic parameter values than oral administration did. Monotherapy of salicyl-AMS at 5.6 or 16.7 mg/kg significantly inhibitedM. tuberculosisgrowth in the mouse lung, providing the firstin vivoproof of concept for this novel antibacterial strategy.


2015 ◽  
Vol 198 (5) ◽  
pp. 857-866 ◽  
Author(s):  
Joyce Wang ◽  
Jalal Moolji ◽  
Alex Dufort ◽  
Alfredo Staffa ◽  
Pilar Domenech ◽  
...  

ABSTRACTMycobacterium aviumsubsp.paratuberculosisis a host-adapted pathogen that evolved from the environmental bacteriumM. aviumsubsp.hominissuisthrough gene loss and gene acquisition. Growth ofM. aviumsubsp.paratuberculosisin the laboratory is enhanced by supplementation of the media with the iron-binding siderophore mycobactin J. Here we examined the production of mycobactins by related organisms and searched for an alternative iron uptake system inM. aviumsubsp.paratuberculosis. Through thin-layer chromatography and radiolabeled iron-uptake studies, we showed thatM. aviumsubsp.paratuberculosisis impaired for both mycobactin synthesis and iron acquisition. Consistent with these observations, we identified several mutations, including deletions, inM. aviumsubsp.paratuberculosisgenes coding for mycobactin synthesis. Using a transposon-mediated mutagenesis screen conditional on growth without myobactin, we identified a potential mycobactin-independent iron uptake system on aM. aviumsubsp.paratuberculosis-specific genomic island, LSPP15. We obtained a transposon (Tn) mutant with a disruption in the LSPP15 geneMAP3776cfor targeted study. The mutant manifests increased iron uptake as well as intracellular iron content, with genes downstream of the transposon insertion (MAP3775ctoMAP3772c[MAP3775-2c]) upregulated as the result of a polar effect. As an independent confirmation, we observed the same iron uptake phenotypes by overexpressingMAP3775-2cin wild-typeM. aviumsubsp.paratuberculosis. These data indicate that the horizontally acquired LSPP15 genes contribute to iron acquisition byM. aviumsubsp.paratuberculosis, potentially allowing the subsequent loss of siderophore production by this pathogen.IMPORTANCEMany microbes are able to scavenge iron from their surroundings by producing iron-chelating siderophores. One exception isMycobacterium aviumsubsp.paratuberculosis, a fastidious, slow-growing animal pathogen whose growth needs to be supported by exogenous mycobacterial siderophore (mycobactin) in the laboratory. Data presented here demonstrate that, compared to other closely relatedM. aviumsubspecies, mycobactin production and iron uptake are different inM. aviumsubsp.paratuberculosis, and these phenotypes may be caused by numerous deletions in its mycobactin biosynthesis pathway. Using a genomic approach, supplemented by targeted genetic and biochemical studies, we identified that LSPP15, a horizontally acquired genomic island, may encode an alternative iron uptake system. These findings shed light on the potential physiological consequence of horizontal gene transfer inM. aviumsubsp.paratuberculosisevolution.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Ting Y. Wong ◽  
Jesse M. Hall ◽  
Evan S. Nowak ◽  
Dylan T. Boehm ◽  
Laura A. Gonyar ◽  
...  

ABSTRACTBordetella pertussiscauses the disease whooping cough through coordinated control of virulence factors by theBordetellavirulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describein vitrogene expression profiles ofB. pertussisand other pathogens. In previous studies, we have analyzed thein vitrogene expression profiles ofB. pertussis, and we hypothesize that the infection transcriptome profilein vivois significantly different from that under laboratory growth conditions. To study the infection transcriptome ofB. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-μm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing thein vitroandin vivogene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical forB. pertussissurvivalin vivo. Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile ofB. pertussisduring infection, and this method will facilitate efforts to understand how this pathogen causes infection.IMPORTANCEIn vitrogrowth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the “infection transcriptome” ofB. pertussisin the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection.


Sign in / Sign up

Export Citation Format

Share Document