scholarly journals New Surface-Associated Heat-Labile Colonization Factor Antigen (CFA/II) Produced by Enterotoxigenic Escherichia coli of Serogroups O6 and O8

1978 ◽  
Vol 21 (2) ◽  
pp. 638-647 ◽  
Author(s):  
Dolores G. Evans ◽  
Doyle J. Evans
2002 ◽  
Vol 70 (3) ◽  
pp. 1056-1068 ◽  
Author(s):  
Jianmei Yu ◽  
Frederick Cassels ◽  
Tanya Scharton-Kersten ◽  
Scott A. Hammond ◽  
Antoinette Hartman ◽  
...  

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) diarrheal disease is a worldwide problem that may be addressed by transcutaneous delivery of a vaccine. In several human settings, protective immunity has been associated with immune responses to E. coli colonization factors and to the heat-labile toxin that induces the diarrhea. In this set of animal studies, transcutaneous immunization (TCI) using recombinant colonization factor CS6 and cholera toxin (CT) or heat-labile enterotoxin (LT) as the adjuvant induced immunoglobulin G (IgG) and IgA anti-CS6 responses in sera and stools and antibody responses that recognized CS6 antigen in its native configuration. The antitoxin immunity induced by TCI was also shown to protect against enteric toxin challenge. Although immunization with LT via the skin induced mucosal secretory IgA responses to LT, protection could also be achieved by intravenous injection of the immune sera. Finally, a malaria vaccine antigen, merzoite surface protein 142 administered with CT as the adjuvant, induced both merzoite surface protein antibodies and T-cell responses while conferring protective antitoxin immunity, suggesting that both antiparasitic activity and antidiarrheal activity can be obtained with a single vaccine formulation. Overall, our results demonstrate that relevant colonization factor and antitoxin immunity can be induced by TCI and suggest that an ETEC traveler's diarrhea vaccine could be delivered by using a patch.


2001 ◽  
Vol 69 (9) ◽  
pp. 5864-5873 ◽  
Author(s):  
Tooru Taniguchi ◽  
Yukihiro Akeda ◽  
Ayako Haba ◽  
Yoko Yasuda ◽  
Koichiro Yamamoto ◽  
...  

ABSTRACT The assembly of pilus colonization factor antigen III (CFA/III) of enterotoxigenic Escherichia coli (ETEC) requires the processing of CFA/III major pilin (CofA) by a prepilin peptidase (CofP), similar to other type IV pilus formation systems. CofA is produced initially as a 26.5-kDa preform pilin (prepilin) and then processed to a 20.5-kDa mature pilin by CofP which is predicted to be localized in the inner membrane. In the present experiment, we determined the nucleotide sequence of the whole region for CFA/III formation and identified a cluster of 14 genes, includingcofA and cofP. Several proteins encoded bycof genes were similar to previously described proteins, such as the toxin-coregulated pili of Vibrio cholerae and the bundle-forming pili of enteropathogenic E. coli. The G+C content of the cof gene cluster was 37%, which was significantly lower than the average for the E. coli genome (50%). The introduction of a recombinant plasmid containing thecof gene cluster into the E. coli K-12 strain conferred CFA/III biogenesis and the ability of adhesion to the human colon carcinoma cell line Caco-2. This is the first report of a complete nucleotide sequence of the type IV pili found in human ETEC, and our results provide a useful model for studying the molecular mechanism of CFA/III biogenesis and the role of CFA/III in ETEC infection.


Sign in / Sign up

Export Citation Format

Share Document