scholarly journals Translocation of Certain Indigenous Bacteria from the Gastrointestinal Tract to the Mesenteric Lymph Nodes and Other Organs in a Gnotobiotic Mouse Model

1979 ◽  
Vol 23 (2) ◽  
pp. 403-411 ◽  
Author(s):  
Rodney D. Berg ◽  
Alva W. Garlington
1980 ◽  
Vol 29 (3) ◽  
pp. 1073-1081
Author(s):  
Rodney D. Berg

Escherichia coli C25 maintained population levels of 10 9 to 10 10 per g of cecum and translocated to 100% of the middle mesenteric lymph nodes in gnotobiotic mice monoassociated with E. coli C25. Intragastric inoculation of these mice with the cecal contents from specific-pathogen-free mice reduced the population levels of E. coli C25 to 10 6 per g of cecum and completely inhibited translocation to the mesenteric lymph nodes. Intragastric inoculation with heat-treated, Formalintreated, or filtered cecal contents did not reduce the population levels of E. coli C25 or reduce the incidence of translocation of E. coli C25 to the mesenteric lymph nodes. Thus, viable bacteria apparently are required in the cecal contents inocula to reduce the population levels and the incidence of translocation of E. coli C25. Treatment with streptomycin plus bacitracin decreased the anaerobic bacterial levels in these gnotobiotic mice, allowing increased population levels of E. coli C25 and increased translocation to the mesenteric lymph nodes. E. coli C25 also translocated to the mesenteric lymph nodes of specific-pathogen-free mice treated with streptomycin and bacitracin before colonization with E. coli C25. The high cecal population levels of E. coli C25 in these antibiotic-decontaminated specific-pathogen-free mice apparently overwhelm any barrier to translocation exerted by the immunologically developed lamina propria of the specific-pathogen-free mice. Inoculation of gnotobiotic mice with a cecal flora also reduced the population levels of an indigenous strain of E. coli with a concomitant inhibition of translocation of the indigenous E. coli to the mesenteric lymph nodes. Thus, bacterial antagonism of the gastrointestinal population levels of certain indigenous bacteria, such as E. coli , by other members of the normal bacterial flora appears to be an important defense mechanism confining bacteria to the gastrointestinal tract.


2001 ◽  
Vol 69 (5) ◽  
pp. 2779-2787 ◽  
Author(s):  
Joan Mecsas ◽  
Inna Bilis ◽  
Stanley Falkow

ABSTRACT Yersinia pseudotuberculosis localizes to the distal ileum, cecum, and proximal colon of the gastrointestinal tract after oral infection. Using signature-tagged mutagenesis, we isolated 13Y. pseudotuberculosis mutants that failed to survive in the cecum of mice after orogastric inoculation. Twelve of these mutants were also attenuated for replication in the spleen after intraperitoneal infection, whereas one strain, mutated the gene encoding invasin, replicated as well as wild-type bacteria in the spleen. Several mutations were in operons encoding components of the type III secretion system, including components involved in translocating Yop proteins into host cells. This indicates that one or more Yops may be necessary for survival in the gastrointestinal tract. Three mutants were defective in O-antigen biosynthesis; these mutants were also unable to invade epithelial cells as efficiently as wild-typeY. pseudotuberculosis. Several other mutations were in genes that had not previously been associated with growth in a host, including cls, ksgA, and sufl. In addition, using Y. pseudotuberculosis strains marked with signature tags, we counted the number of different bacterial clones that were present in the cecum, mesenteric lymph nodes, and spleen 5 days postinfection. We find barriers in the host animal that limit the number of bacteria that succeed in reaching and/or replicating in the mesenteric lymph nodes and spleen after breaching the gut mucosa.


1998 ◽  
Vol 66 (8) ◽  
pp. 3941-3951 ◽  
Author(s):  
D. H. Schmiel ◽  
E. Wagar ◽  
L. Karamanou ◽  
D. Weeks ◽  
V. L. Miller

ABSTRACT Some isolates of Yersinia enterocolitica exhibit phospholipase activity, which has been linked to lecithin-dependent hemolysis (M. Tsubokura, K. Otsoki, I. Shimohira, and H. Yamamoto, Infect. Immun. 25:939–942, 1979). A gene encoding Y. enterocolitica phospholipase was identified, and analysis of the nucleotide sequence revealed two tandemly transcribed open reading frames. The first, yplA, has 74% identity and 85% similarity to the phospholipase A found in Serratia liquefaciens. Though the other, yplB, was less similar to the downstream accessory protein found in S. liquefaciens, the organization in both species is similar. Subsequently, a yplA-null Y. enterocoliticastrain, YEDS10, was constructed and demonstrated to be phospholipase negative by plate and spectrophotometric assays. To ascertain whether the phospholipase has a role in pathogenesis, YEDS10 was tested in the mouse model. In experiments with perorally infected BALB/c mice, fewer YEDS10 organisms were recovered from the mesenteric lymph nodes and Peyer’s patches (PP) than the parental strain at 3 or 5 days postinfection. Furthermore, bowel tissue and PP infected with YEDS10 appeared to be less inflamed than those infected with the parental strain. When extremely high doses of both the parental and YEDS10 strains were given, similar numbers of viable bacteria were recovered from the PP and mesenteric lymph nodes on day 3. However, the numbers of foci and the extent of inflammation and necrosis within them were noticeably less for YEDS10 compared to the parental strain. Together these findings suggest that Y. enterocolitica produces a phospholipase A which has a role in pathogenesis.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e107492 ◽  
Author(s):  
Haruyo Nakajima-Adachi ◽  
Akira Kikuchi ◽  
Yoko Fujimura ◽  
Kyoko Shibahara ◽  
Tsuyoshi Makino ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A183-A183
Author(s):  
H KOBAYASHI ◽  
H NAGATA ◽  
S MIURA ◽  
T AZUMA ◽  
H SUZUKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document