scholarly journals Identification of Attenuated Yersinia pseudotuberculosis Strains and Characterization of an Orogastric Infection in BALB/c Mice on Day 5 Postinfection by Signature-Tagged Mutagenesis

2001 ◽  
Vol 69 (5) ◽  
pp. 2779-2787 ◽  
Author(s):  
Joan Mecsas ◽  
Inna Bilis ◽  
Stanley Falkow

ABSTRACT Yersinia pseudotuberculosis localizes to the distal ileum, cecum, and proximal colon of the gastrointestinal tract after oral infection. Using signature-tagged mutagenesis, we isolated 13Y. pseudotuberculosis mutants that failed to survive in the cecum of mice after orogastric inoculation. Twelve of these mutants were also attenuated for replication in the spleen after intraperitoneal infection, whereas one strain, mutated the gene encoding invasin, replicated as well as wild-type bacteria in the spleen. Several mutations were in operons encoding components of the type III secretion system, including components involved in translocating Yop proteins into host cells. This indicates that one or more Yops may be necessary for survival in the gastrointestinal tract. Three mutants were defective in O-antigen biosynthesis; these mutants were also unable to invade epithelial cells as efficiently as wild-typeY. pseudotuberculosis. Several other mutations were in genes that had not previously been associated with growth in a host, including cls, ksgA, and sufl. In addition, using Y. pseudotuberculosis strains marked with signature tags, we counted the number of different bacterial clones that were present in the cecum, mesenteric lymph nodes, and spleen 5 days postinfection. We find barriers in the host animal that limit the number of bacteria that succeed in reaching and/or replicating in the mesenteric lymph nodes and spleen after breaching the gut mucosa.

1980 ◽  
Vol 29 (3) ◽  
pp. 1073-1081
Author(s):  
Rodney D. Berg

Escherichia coli C25 maintained population levels of 10 9 to 10 10 per g of cecum and translocated to 100% of the middle mesenteric lymph nodes in gnotobiotic mice monoassociated with E. coli C25. Intragastric inoculation of these mice with the cecal contents from specific-pathogen-free mice reduced the population levels of E. coli C25 to 10 6 per g of cecum and completely inhibited translocation to the mesenteric lymph nodes. Intragastric inoculation with heat-treated, Formalintreated, or filtered cecal contents did not reduce the population levels of E. coli C25 or reduce the incidence of translocation of E. coli C25 to the mesenteric lymph nodes. Thus, viable bacteria apparently are required in the cecal contents inocula to reduce the population levels and the incidence of translocation of E. coli C25. Treatment with streptomycin plus bacitracin decreased the anaerobic bacterial levels in these gnotobiotic mice, allowing increased population levels of E. coli C25 and increased translocation to the mesenteric lymph nodes. E. coli C25 also translocated to the mesenteric lymph nodes of specific-pathogen-free mice treated with streptomycin and bacitracin before colonization with E. coli C25. The high cecal population levels of E. coli C25 in these antibiotic-decontaminated specific-pathogen-free mice apparently overwhelm any barrier to translocation exerted by the immunologically developed lamina propria of the specific-pathogen-free mice. Inoculation of gnotobiotic mice with a cecal flora also reduced the population levels of an indigenous strain of E. coli with a concomitant inhibition of translocation of the indigenous E. coli to the mesenteric lymph nodes. Thus, bacterial antagonism of the gastrointestinal population levels of certain indigenous bacteria, such as E. coli , by other members of the normal bacterial flora appears to be an important defense mechanism confining bacteria to the gastrointestinal tract.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0136290 ◽  
Author(s):  
Maik Rosenheinrich ◽  
Wiebke Heine ◽  
Carina M. Schmühl ◽  
Fabio Pisano ◽  
Petra Dersch

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 729-729
Author(s):  
Alan M. Hanash ◽  
Lucy W. Kappel ◽  
Nury L. Yim ◽  
Rebecca A. Nejat ◽  
Gabrielle L. Goldberg ◽  
...  

Abstract Abstract 729 Allogeneic hematopoietic transplantation is frequently the only curative therapy available to patients with hematopoietic malignancies, however transplant success continues to be limited by complications including graft vs. host disease (GVHD) and disease relapse. Separation of GVHD from graft vs. leukemia/lymphoma (GVL) responses continues to be a major goal of experimental and clinical transplantation, and better understanding of T cell immunobiology may lead to novel strategies to accomplish this goal. Interleukin 21 (IL-21) is a pro-inflammatory cytokine produced by Th17 helper T cells, and abrogation of IL-21 signaling has recently been demonstrated to reduce GVHD while retaining GVL. However, the mechanisms by which IL-21 may lead to a separation of GVHD and GVL are incompletely understood. In order to characterize the effect of IL-21 on GVH and GVL T cell responses, we compared wild type and IL-21 receptor knockout (IL-21R KO) donor T cells in a C57BL/6 into BALB/c murine MHC-mismatched bone marrow transplant (BMT) model. Lethally irradiated BMT recipients of IL-21R KO T cells demonstrated decreased GVHD-related morbidity (p<.05) and mortality (p<.01), and decreased histopathologic evidence of GVHD within the small intestine (p<.05). While this reduction in IL-21R KO T cell-mediated GVHD was associated with increased donor regulatory T cells two to three weeks post-BMT (p<.001), IL-21 signaling in both donor CD4 and donor CD8 T cells was found to contribute to GVHD mortality (p<.01 for CD4, p<.05 for CD8). Analysis of IL-21R expression by wild type T cells demonstrated receptor upregulation upon polyclonal activation in vitro and upon alloactivation in vivo (p<.01). However, this IL-21R upregulation was not required for in vivo alloactivation, as IL-21R KO and wild type donor T cells demonstrated equivalently greater proliferation in allogeneic vs. syngeneic recipients (p<.001), equivalent upregulation of CD25 (p<.001), and equivalent downregulation of CD62L (p<.01 for CD8 T cells). Despite this equivalent alloactivation, IL-21R KO T cells demonstrated decreased infiltration within the small intestine (p<.05), decreased infiltration in mesenteric lymph nodes (p<.05 for CD8 T cells, p<.001 for CD4 T cells), and decreased inflammatory cytokine-producing CD4 T cells within mesenteric lymph nodes (p<.01 for IFN-g, p<.001 for TNF-a, Figure 1A). Consistent with this, transplanted IL-21R KO donor T cells demonstrated decreased expression of a4b7 integrin (LPAM, p<.05), a molecule known to be involved in homing of GVHD-mediating donor T cells to the gut. However, in contrast to the reduced inflammatory cytokine-producing CD4 T cells observed in mesenteric lymph nodes, IL-21R KO helper T cell cytokine production was maintained in spleen (Figure 1B) and peripheral lymph nodes, and IL-21R KO T cells were able to protect recipient mice from lethality due to A20 lymphoma (p<.001). In summary, abrogation of IL-21 signaling in donor T cells leads to tissue-specific modulation of immunity, such that gastrointestinal GVHD is reduced, but peripheral T cell function and GVL capacity are retained. Targeting IL-21 for therapeutic intervention is an exciting strategy to separate GVHD from GVL, and this novel approach should be considered for clinical investigation to improve transplant outcomes and prevent malignant relapse. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 8 (8) ◽  
pp. e1002828 ◽  
Author(s):  
Gregory T. Crimmins ◽  
Sina Mohammadi ◽  
Erin R. Green ◽  
Molly A. Bergman ◽  
Ralph R. Isberg ◽  
...  

Parasitology ◽  
2000 ◽  
Vol 121 (5) ◽  
pp. 565-573 ◽  
Author(s):  
J. PÉREZ-SERRANO ◽  
J. MARTÍNEZ ◽  
P. REGAL ◽  
W. E. BERNADINA ◽  
F. RODRÍGUEZ-CAABEIRO

We recently showed that, in our Trichinella spiralis rat model, first exposure, but not re-exposure to infective-stage larvae evoked heat shock responses in 4 test organs. Our work, however, failed to implicate either early complete clearance of challenge muscle larvae (ML), or rapid elimination of newborn larvae (NBL) in the phenomenon noted in reinfected rats. This study clarifies that issue using 2 established facts in T. spiralis biology and anti-T. spiralis immunology. That is, adult worms injure gut cells and immune destruction of NBL requires release of material also toxic to host cells. To approach the above problem we analysed relevant and irrelevant rat organs for increased heat shock protein (HSP) production at 1, 7, 14, 20 and 27 p.i. during first and second infections. Organs examined were intestines, mesenteric lymph nodes (MLN), heart and lungs. Using densitometric analyses of immunoblots, increased HSP expression was detected on day 7 in intestines from both primary and secondary-infected rats albeit that the change in the latter was just short of significant. Interestingly, MLN only exhibited increased HSP levels in the reinfected rat model with increased HSP levels persisting for 1 week. A lasting shock response was detected in reinfected rats; in contrast, first exposure resulted in shock responses being evident in lungs at either day 7 or day 14, only. These findings suggest that (i) in immune rats, a few challenge ML develop into adults, produce NBLwhich are trapped within MLN, and (ii) that anti-T. spiralis and/or anti-NBL immunity is associated with an, as yet, uncomprehended stress to host's heart tissues.


2020 ◽  
Author(s):  
Jean Pierre Kambala Mukendi ◽  
Risa Nakamura ◽  
Satoshi Uematsu ◽  
Shinjiro Hamano

Abstract Background: Schistosomes are trematode worms that dwell in their definitive host’s blood vessels, where females lay eggs that need to be discharged into the environment with host excreta to maintain their life cycle. Both worms and eggs require type 2 immunity for their maturation and excretion, respectively. However, immune molecules that orchestrate such immunity remain unclear. IL-33 is one of the epithelium-derived cytokines that induce type 2 immunity in tissues. This study aimed at determining its role in the maturation, reproduction, and excretion of S. mansoni eggs, and in the maintenance of egg-induced pathology in the intestines of mice.Methods: Using S. mansoni-infected IL-33-deficient (IL-33-/-) and wild-type (WT) mice, the morphology of worms and the number of eggs in intestinal tissues were studied at different time points of infection. IL-5 and IL-13 production in spleens and mesenteric lymph nodes were measured. Tissue histology was performed on the terminal ilea of infected and non-infected mice.Results: Morphology-wise, worms from IL-33-/- and WT mice at the fourth and sixth weeks of infection did not differ. The number of eggs in intestinal tissues did not differ much between IL-33-/- and WT mice. In the sixth week of infection, IL-33-/- mice presented impaired type 2 immunity in intestines, characterized by decreased production of IL-5 and IL-13 in mesenteric lymph nodes and fewer inflammatory infiltrates with fewer eosinophils in the ilea. Otherwise there was no difference between IL-33-/- and WT mice in the levels of IL-25 and thymic stromal lymphopoietin (TSLP) in intestinal tissues.Conclusions: Despite its ability to initiate type 2 immunity in tissues, IL-33 alone seems dispensable for S. mansoni maturation and its absence may not affect much the accumulation of eggs in intestinal tissues. The transient impairment of type 2 immunity observed in the intestines, but not spleens, highlights the importance of IL-33 over IL-25 and TSLP in initiating, but not maintaining, locally-induced type 2 immunity in intestinal tissues during schistosome infection. Further studies are needed to decipher the role of each of them in schistosomiasis and clarify the possible interactions that might exist between them.


1983 ◽  
Vol 17 (4) ◽  
pp. 311-320 ◽  
Author(s):  
L. F. Taffs ◽  
Glynis Dunn

A spontaneous outbreak of yersiniosis caused by Yersinia pseudotuberculosis serotype IIB occurred in a small indoor breeding colony of red-bellied tamarins ( Saguinus labiatus) during the winter of 1981. Of 3S monkeys at risk 6 died of an acute or subacute infection over a period of 23 days. Clinical signs were anorexia, weakness, listlessness and depression. The disease was characterized by focal necrosis of the liver, spleen, mesenteric lymph nodes, ulcerative enteritis, and the presence of colonies of Gram-negative bacilli in the lesions. Y. pseudotuberculosis was isolated from the liver, spleen, mesenteric lymph nodes and kidney but not from the blood, lung or intestine. Contaminated food was believed to be the source of infection.


2021 ◽  
Vol 23 (4) ◽  
pp. 629-634
Author(s):  
K. M. Achasova ◽  
O. V. Gvozdeva ◽  
E. N. Kozhevnikova ◽  
E. A. Litvinova

The immune processes associated with the formation of resistance to pathogens in the intestine depend on the microbiome. The maintenance of homeostasis in the intestine is provided by regulatory T-cells. In inflammatory bowel disease (IBD), both a disturbance of the T-regulatory function and changes in microflora are observed. Aggravation of the disease is accompanied by various infections. However, pathobionts such as Helicobacter spp., can affect regulatory T-cells. One of the genetic models for studying IBD is Muc2 knockout mice. In these mice, as in humans with IBD, intestinal epithelial and immune cells closely interact with the microflora. It is believed that the immune cells of the lymph nodes Muc2-/- mice are sensitive to changes in the microflora formed in them. In this study, the effect of Helicobacter spp. on the number and percentage of different types of leukocytes and T regulatory cells in the mesenteric lymph nodes of Muc2-/- mice was studied. The number of CD45+CD19+, CD45+CD3+, CD45+CD3+CD4+, CD45+CD3+CD8+-cells in the mesenteric lymph nodes of Muc2-/- mice was significantly higher to compare with wild-type Muc2+/+ mice. However, the presence of infection in Muc2-/- mice canceled the increase in the number of CD45+CD19+, CD45+CD3+, CD45+CD3+CD4+, CD45+CD3+CD8+-cells. In wild-type Muc2+/+ mice, infection had no significant effect on cells in mesenteric lymph nodes. This change in the decrease in immune cells in the mesenteric lymph nodes under the Helicobacter spp. may be associated with the activation of regulatory T-cells. Indeed, it has been shown that the presence of a congenital Helicobacter spp. infection increased of the number of regulatory T-cells (CD45+CD4+CD25+FoxP3+) in the mesenteric lymph nodes. Well known that regulatory T-cells mediate anti-inflammatory responses in the gut. Thus, an increase in regulatory T-cells promotes a decrease in all types of immune cells in the mesenteric lymph nodes of Muc2-/- mice infected with Helicobacter spp. It could provide an improvement in the vital functions of these mice and possibly reduces inflammatory responses in the intestine. This may indicate that some congenital pathobionts activate of the regulatory mechanisms of immunity and, thereby, have a beneficial effect on the host. 


2018 ◽  
Vol 202 (1) ◽  
pp. 260-267 ◽  
Author(s):  
Alberto Bravo-Blas ◽  
Lotta Utriainen ◽  
Slater L. Clay ◽  
Verena Kästele ◽  
Vuk Cerovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document