The Abdomen and Gastrointestinal Tract: Mesenteric Lymph Nodes in Children

1980 ◽  
Vol 29 (3) ◽  
pp. 1073-1081
Author(s):  
Rodney D. Berg

Escherichia coli C25 maintained population levels of 10 9 to 10 10 per g of cecum and translocated to 100% of the middle mesenteric lymph nodes in gnotobiotic mice monoassociated with E. coli C25. Intragastric inoculation of these mice with the cecal contents from specific-pathogen-free mice reduced the population levels of E. coli C25 to 10 6 per g of cecum and completely inhibited translocation to the mesenteric lymph nodes. Intragastric inoculation with heat-treated, Formalintreated, or filtered cecal contents did not reduce the population levels of E. coli C25 or reduce the incidence of translocation of E. coli C25 to the mesenteric lymph nodes. Thus, viable bacteria apparently are required in the cecal contents inocula to reduce the population levels and the incidence of translocation of E. coli C25. Treatment with streptomycin plus bacitracin decreased the anaerobic bacterial levels in these gnotobiotic mice, allowing increased population levels of E. coli C25 and increased translocation to the mesenteric lymph nodes. E. coli C25 also translocated to the mesenteric lymph nodes of specific-pathogen-free mice treated with streptomycin and bacitracin before colonization with E. coli C25. The high cecal population levels of E. coli C25 in these antibiotic-decontaminated specific-pathogen-free mice apparently overwhelm any barrier to translocation exerted by the immunologically developed lamina propria of the specific-pathogen-free mice. Inoculation of gnotobiotic mice with a cecal flora also reduced the population levels of an indigenous strain of E. coli with a concomitant inhibition of translocation of the indigenous E. coli to the mesenteric lymph nodes. Thus, bacterial antagonism of the gastrointestinal population levels of certain indigenous bacteria, such as E. coli , by other members of the normal bacterial flora appears to be an important defense mechanism confining bacteria to the gastrointestinal tract.


2001 ◽  
Vol 69 (5) ◽  
pp. 2779-2787 ◽  
Author(s):  
Joan Mecsas ◽  
Inna Bilis ◽  
Stanley Falkow

ABSTRACT Yersinia pseudotuberculosis localizes to the distal ileum, cecum, and proximal colon of the gastrointestinal tract after oral infection. Using signature-tagged mutagenesis, we isolated 13Y. pseudotuberculosis mutants that failed to survive in the cecum of mice after orogastric inoculation. Twelve of these mutants were also attenuated for replication in the spleen after intraperitoneal infection, whereas one strain, mutated the gene encoding invasin, replicated as well as wild-type bacteria in the spleen. Several mutations were in operons encoding components of the type III secretion system, including components involved in translocating Yop proteins into host cells. This indicates that one or more Yops may be necessary for survival in the gastrointestinal tract. Three mutants were defective in O-antigen biosynthesis; these mutants were also unable to invade epithelial cells as efficiently as wild-typeY. pseudotuberculosis. Several other mutations were in genes that had not previously been associated with growth in a host, including cls, ksgA, and sufl. In addition, using Y. pseudotuberculosis strains marked with signature tags, we counted the number of different bacterial clones that were present in the cecum, mesenteric lymph nodes, and spleen 5 days postinfection. We find barriers in the host animal that limit the number of bacteria that succeed in reaching and/or replicating in the mesenteric lymph nodes and spleen after breaching the gut mucosa.


2001 ◽  
Vol 120 (5) ◽  
pp. A183-A183
Author(s):  
H KOBAYASHI ◽  
H NAGATA ◽  
S MIURA ◽  
T AZUMA ◽  
H SUZUKI ◽  
...  

Author(s):  
Carolin Wiechers ◽  
Mangge Zou ◽  
Eric Galvez ◽  
Michael Beckstette ◽  
Maria Ebel ◽  
...  

AbstractIntestinal Foxp3+ regulatory T cell (Treg) subsets are crucial players in tolerance to microbiota-derived and food-borne antigens, and compelling evidence suggests that the intestinal microbiota modulates their generation, functional specialization, and maintenance. Selected bacterial species and microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), have been reported to promote Treg homeostasis in the intestinal lamina propria. Furthermore, gut-draining mesenteric lymph nodes (mLNs) are particularly efficient sites for the generation of peripherally induced Tregs (pTregs). Despite this knowledge, the direct role of the microbiota and their metabolites in the early stages of pTreg induction within mLNs is not fully elucidated. Here, using an adoptive transfer-based pTreg induction system, we demonstrate that neither transfer of a dysbiotic microbiota nor dietary SCFA supplementation modulated the pTreg induction capacity of mLNs. Even mice housed under germ-free (GF) conditions displayed equivalent pTreg induction within mLNs. Further molecular characterization of these de novo induced pTregs from mLNs by dissection of their transcriptomes and accessible chromatin regions revealed that the microbiota indeed has a limited impact and does not contribute to the initialization of the Treg-specific epigenetic landscape. Overall, our data suggest that the microbiota is dispensable for the early stages of pTreg induction within mLNs.


1997 ◽  
Vol 169 (5) ◽  
pp. 1253-1255 ◽  
Author(s):  
K N Chintapalli ◽  
C C Esola ◽  
S Chopra ◽  
A A Ghiatas ◽  
G D Dodd

Sign in / Sign up

Export Citation Format

Share Document