scholarly journals Roles for tumor necrosis factor alpha and nitric oxide in resistance of rat alveolar macrophages to Legionella pneumophila.

1996 ◽  
Vol 64 (8) ◽  
pp. 3236-3243 ◽  
Author(s):  
S J Skerrett ◽  
T R Martin
2000 ◽  
Vol 68 (9) ◽  
pp. 5234-5240 ◽  
Author(s):  
Catherine Newton ◽  
Shannon McHugh ◽  
Ray Widen ◽  
Noriya Nakachi ◽  
Thomas Klein ◽  
...  

ABSTRACT Infection of BALB/c mice with a sublethal concentration ofLegionella pneumophila causes an acute disease that is resolved by innate immune responses. The infection also initiates the development of adaptive Th1 responses that protect the mice from challenge infections. To study the early responses, cytokines induced during the first 24 h after infection were examined. In the serum, interleukin-12 (IL-12) was detectable by 3 h and peaked at 10 h, while gamma interferon was discernible by 5 h and peaked at 8 h. Similar patterns were observed in ex vivo cultures of splenocytes. A transient IL-4 response was also detected by 3 h postinfection in ex vivo cultures. BALB/c IL-4-deficient mice were more susceptible to L. pneumophila infection than were wild-type mice. The infection induced higher serum levels of acute-phase cytokines (tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6), and reducing TNF-α levels with antibodies protected the mice from death. Moreover, the addition of IL-4 to L. pneumophila-infected macrophage cultures suppressed the production of these cytokines. Thus, the lack of IL-4 in the deficient mice resulted in unchecked TNF-α production, which appeared to cause the mortality. Monocyte chemoattractant protein-1 (MCP-1), a chemokine that is induced by IL-4 during Listeria monocytogenesinfection, was detected at between 2 and 30 h after infection. However, MCP-1 did not appear to be induced by IL-4 or to be required for the TNF-α regulation by IL-4. The data suggest that the early increase in IL-4 serves to regulate the mobilization of acute phase cytokines and thus controls the potential harmful effects of these cytokines.


1993 ◽  
Vol 265 (5) ◽  
pp. L462-L471 ◽  
Author(s):  
T. J. Ferro ◽  
D. C. Hocking ◽  
A. Johnson

We postulated that tumor necrosis factor-alpha (TNF) “primes” the lung for the development of pulmonary vasoconstriction and edema by inducing the release of polymorphonuclear leukocyte (PMN)-derived reactive oxidant species (ROS). Guinea pigs were injected with TNF (1.6 x 10(5) U/kg ip), and the lungs isolated 18 h later. Compared with controls, TNF pretreatment resulted in 1) greater increases in lung weight and capillary pressure in response to the thromboxane A2 mimetic U-46619 (365 pmol/min) and 2) an increase in the dose of acetylcholine (ACh) causing 50% of maximal dilation (EC50). The vascular effects of TNF were associated with 1) decreased lung effluent nitrite (NO2-, oxidation product of nitric oxide), 2) increased lung effluent superoxide (O2-), and 3) increased lung myeloperoxidase (MPO). Superoxide dismutase (SOD, 10 U/ml) prevented 1) the effects of TNF on the hemodynamic responses to U-46619 and ACh and 2) the TNF-induced decrease in NO2-. The effects of TNF on lung MPO and effluent O2- were prevented using cyclophosphamide intraperitoneally (100 mg/kg 5 days before, and 50 mg/kg 1 day before, treatment with TNF or control). The data suggest that ROS generated from PMN mediate the decrease in nitric oxide and altered pulmonary vasoreactivity induced by TNF.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Kanidta Kaewkroek ◽  
Chatchai Wattanapiromsakul ◽  
Palangpon Kongsaeree ◽  
Supinya Tewtrakul

The ethanol extract of the rhizomes of Kaempferia marginata showed a potent inhibitory effect against lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) release in RAW264.7 cells. Moreover, the partition with various organic solvents also inhibited NO production. One new pimarane-type diterpene, 1α-acetoxysandaracopimaradien-2α-ol (5), along with four known diterpenes (1–4), were isolated from the n-hexane and chloroform layers, respectively. Among these metabolites, compounds 1 and 4 were isolated for the first time from K. marginata. Compounds 1–5 showed significant inhibitory effects on NO production, with IC50 values ranging from 38.6 to 51.9 μM. Furthermore, compound 2 also exhibited significant activity against TNF-α release (IC50 = 48.3 μM). These findings may support the use of K. marginata by traditional doctors for treatment of inflammatory-related diseases.


1999 ◽  
Vol 5 (3) ◽  
pp. 61
Author(s):  
Yutaka Ishibashl ◽  
Takashi Sugamori ◽  
Nobuyuki Takahashi ◽  
Takeshi Sakane ◽  
Shuzo Ohhata ◽  
...  

1996 ◽  
Vol 24 (11) ◽  
pp. 1806-1810 ◽  
Author(s):  
Jan H. Zwaveling ◽  
Jan K. Maring ◽  
Han Moshage ◽  
Robert J. van Ginkel ◽  
Harald J. Hoekstra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document