scholarly journals Differential Protective Efficacy of DNA Vaccines Expressing Secreted Proteins of Mycobacterium tuberculosis

1999 ◽  
Vol 67 (4) ◽  
pp. 1702-1707 ◽  
Author(s):  
Arun T. Kamath ◽  
Carl G. Feng ◽  
Murdo Macdonald ◽  
Helen Briscoe ◽  
Warwick J. Britton

ABSTRACT The development of more-effective antituberculosis vaccines would assist in the control of the global problem of infection withMycobacterium tuberculosis. One recently devised vaccination strategy is immunization with DNA plasmids encoding individual microbial genes. Using the genes for the M. tuberculosis secreted proteins MPT64 (23 kDa), Ag85B (30 kDa), and ESAT-6 (6 kDa) as candidate antigens, DNA vaccines were prepared and tested for immunogenicity and protective efficacy in a murine model of aerosolized tuberculosis (TB). Intramuscular immunization with DNA-64 or DNA-85B resulted in the activation of CD4+ T cells, which produce gamma interferon (IFN-γ), and high titers of specific immunoglobulin G antibodies. Further, DNA-64 induced major histocompatibility complex class I-restricted CD8+cytotoxic T cells. The addition of a eukaryotic leader sequence tompt64 did not significantly increase the T-cell or antibody response. Each of the three DNA vectors stimulated a significant reduction in the level of M. tuberculosis infection in the lungs of mice challenged 4 weeks after immunization, but not to the levels resulting after immunization with Mycobacterium bovis BCG. The vaccines showed a consistent hierarchy of protection, with the most effective being Ag85B, followed by ESAT-6 and then MPT64. Coimmunization with the three vectors resulted in a greater degree of protection than that induced by any single vector. This protective efficacy was associated with the emergence of IFN-γ-secreting T cells earlier than in infected animals immunized with a control vector. The efficacy of these DNA vaccines suggests that multisubunit vaccination may contribute to future vaccine strategies against TB.

2017 ◽  
Vol 24 (11) ◽  
Author(s):  
Ahreum Kim ◽  
Yun-Gyoung Hur ◽  
Sunwha Gu ◽  
Sang-Nae Cho

ABSTRACT The aim of this study was to evaluate the protective efficacy of MTBK_24820, a complete form of PPE39 protein derived from a predominant Beijing/K strain of Mycobacterium tuberculosis in South Korea. Mice were immunized with MTKB_24820, M. bovis Bacilli Calmette-Guérin (BCG), or adjuvant prior to a high-dosed Beijing/K strain aerosol infection. After 4 and 9 weeks, bacterial loads were determined and histopathologic and immunologic features in the lungs and spleens of the M. tuberculosis-infected mice were analyzed. Putative immunogenic T-cell epitopes were examined using synthetic overlapping peptides. Successful immunization of MTBK_24820 in mice was confirmed by increased IgG responses (P < 0.05) and recalled gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-6, and IL-17 responses (P < 0.05 or P < 0.01) to MTBK_24820. After challenge with the Beijing/K strain, an approximately 0.5 to 1.0 log10 reduction in CFU in lungs and fewer lung inflammation lesions were observed in MTBK_24820-immunized mice compared to those for control mice. Moreover, MTBK_24820 immunization elicited significantly higher numbers of CD4+ T cells producing protective cytokines, such as IFN-γ and IL-17, in lungs and spleens (P < 0.01) and CD4+ multifunctional T cells producing IFN-γ, tumor necrosis factor alpha (TNF-α), and/or IL-17 (P < 0.01) than in control mice, suggesting protection comparable to that of BCG against the hypervirulent Beijing/K strain. The dominant immunogenic T-cell epitopes that induced IFN-γ production were at the N terminus (amino acids 85 to 102 and 217 to 234). Its vaccine potential, along with protective immune responses in vivo, may be informative for vaccine development, particularly in regions where the M. tuberculosis Beijing/K-strain is frequently isolated from TB patients.


2015 ◽  
Vol 22 (9) ◽  
pp. 1060-1069 ◽  
Author(s):  
Mariateresa Coppola ◽  
Susan J. F. van den Eeden ◽  
Louis Wilson ◽  
Kees L. M. C. Franken ◽  
Tom H. M. Ottenhoff ◽  
...  

ABSTRACTResponsible for 9 million new cases of active disease and nearly 2 million deaths each year, tuberculosis (TB) remains a global health threat of overwhelming dimensions.Mycobacterium bovisBCG, the only licensed vaccine available, fails to confer lifelong protection and to prevent reactivation of latent infection. Although 15 new vaccine candidates are now in clinical trials, an effective vaccine against TB remains elusive, and new strategies for vaccination are vital. BCG vaccination fails to induce immunity againstMycobacterium tuberculosislatency antigens. Synthetic long peptides (SLPs) combined with adjuvants have been studied mostly for therapeutic cancer vaccines, yet not for TB, and proved to induce efficient antitumor immunity. This study investigated an SLP derived from Rv1733c, a majorM. tuberculosislatency antigen which is highly expressed by “dormant”M. tuberculosisand well recognized by T cells from latentlyM. tuberculosis-infected individuals. In order to assess itsin vivoimmunogenicity and protective capacity, Rv1733c SLP in CpG was administered to HLA-DR3 transgenic mice. Immunization with Rv1733c SLP elicited gamma interferon-positive/tumor necrosis factor-positive (IFN-γ+/TNF+) and IFN-γ+CD4+T cells and Rv1733c-specific antibodies and led to a significant reduction in the bacterial load in the lungs ofM. tuberculosis-challenged mice. This was observed both in a pre- and in a post-M. tuberculosischallenge setting. Moreover, Rv1733c SLP immunization significantly boosted the protective efficacy of BCG, demonstrating the potential ofM. tuberculosislatency antigens to improve BCG efficacy. These data suggest a promising role forM. tuberculosislatency antigen Rv1733c-derived SLPs as a novel TB vaccine approach, both in a prophylactic and in a postinfection setting.


1999 ◽  
Vol 67 (4) ◽  
pp. 1702-1707 ◽  
Author(s):  
Arun T. Kamath ◽  
Carl G. Feng ◽  
Murdo Macdonald ◽  
Helen Briscoe ◽  
Warwick J. Britton

1997 ◽  
Vol 186 (7) ◽  
pp. 1137-1147 ◽  
Author(s):  
Sanjay Gurunathan ◽  
David L. Sacks ◽  
Daniel R. Brown ◽  
Steven L. Reiner ◽  
Hughes Charest ◽  
...  

To determine whether DNA immunization could elicit protective immunity to Leishmania major in susceptible BALB/c mice, cDNA for the cloned Leishmania antigen LACK was inserted into a euykaryotic expression vector downstream to the cytomegalovirus promoter. Susceptible BALB/c mice were then vaccinated subcutaneously with LACK DNA and challenged with L. major promastigotes. We compared the protective efficacy of LACK DNA vaccination with that of recombinant LACK protein in the presence or absence of recombinant interleukin (rIL)-12 protein. Protection induced by LACK DNA was similar to that achieved by LACK protein and rIL-12, but superior to LACK protein without rIL-12. The immunity conferred by LACK DNA was durable insofar as mice challenged 5 wk after vaccination were still protected, and the infection was controlled for at least 20 wk after challenge. In addition, the ability of mice to control infection at sites distant to the site of vaccination suggests that systemic protection was achieved by LACK DNA vaccination. The control of disease progression and parasitic burden in mice vaccinated with LACK DNA was associated with enhancement of antigen-specific interferon-γ (IFN-γ) production. Moreover, both the enhancement of IFN-γ production and the protective immune response induced by LACK DNA vaccination was IL-12 dependent. Unexpectedly, depletion of CD8+ T cells at the time of vaccination or infection also abolished the protective response induced by LACK DNA vaccination, suggesting a role for CD8+ T cells in DNA vaccine induced protection to L. major. Thus, DNA immunization may offer an attractive alternative vaccination strategy against intracellular pathogens, as compared with conventional vaccination with antigens combined with adjuvants.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 715
Author(s):  
Chunxiang Bai ◽  
Lijun Zhou ◽  
Junxia Tang ◽  
Juanjuan He ◽  
Jiangyuan Han ◽  
...  

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is among the most serious infectious diseases worldwide. Adjuvanted protein subunit vaccines have been demonstrated as a kind of promising novel vaccine. This study proposed to investigate whether cytokines interliukine-7 (IL-7) and interliukine-15 (IL-15) help TB subunit vaccines induce long-term cell-mediated immune responses, which are required for vaccination against TB. In this study, mice were immunized with the M. tuberculosis protein subunit vaccines combined with adnovirus-mediated cytokines IL-7, IL-15, IL-7-IL-15, and IL-7-Linker-IL-15 at 0, 2, and 4 weeks, respectively. Twenty weeks after the last immunization, the long-term immune responses, especially the central memory-like T cells (TCM like cell)-mediated immune responses, were determined with the methods of cultured IFN-γ-ELISPOT, expanded secondary immune responses, cell proliferation, and protective efficacy against Mycobacterium bovis Bacilli Calmette-Guerin (BCG) challenge, etc. The results showed that the group of vaccine + rAd-IL-7-Linker-IL-15 induced a stronger long-term antigen-specific TCM like cells-mediated immune responses and had higher protective efficacy against BCG challenge than the vaccine + rAd-vector control group, the vaccine + rAd-IL-7 and the vaccine + rAd-IL-15 groups. This study indicated that rAd-IL-7-Linker-IL-15 improved the TB subunit vaccine’s efficacy by augmenting TCM like cells and provided long-term protective efficacy against Mycobacteria.


PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0147356 ◽  
Author(s):  
Li Li ◽  
Yuxia Jiang ◽  
Suihua Lao ◽  
Binyan Yang ◽  
Sifei Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document