scholarly journals Cytotoxic T-Lymphocyte Epitopes for HLA-B53 and Other HLA Types in the Malaria Vaccine Candidate Liver-Stage Antigen 3

2000 ◽  
Vol 68 (1) ◽  
pp. 227-232 ◽  
Author(s):  
Michael Aidoo ◽  
Ajit Lalvani ◽  
Sarah C. Gilbert ◽  
Jiang Ting Hu ◽  
Pierre Daubersies ◽  
...  

ABSTRACT The development of an effective preerythrocytic vaccine againstPlasmodium falciparum malaria is likely to require inclusion of components from several preerythrocytic antigens. The association of HLA-B53 with resistance to severe malaria in West Africa provided evidence that HLA class I-restricted CD8+ T-cell responses play a role in protective immunity in African children, supporting data from rodent models of malaria. Previously, a single epitope from liver-stage-specific antigen 1 (LSA-1) has been shown to be recognized by HLA-B53-specific cytotoxic T lymphocytes (CTL), but HLA-B53 epitopes were not found in four other antigens. In this study we measured CTL responses to peptides from the recently sequenced antigen liver-stage antigen 3 (LSA-3) and identified in it a new epitope restricted by HLA-B53. Several CTL epitopes restricted by other class I types were also identified within LSA-3 in studies in The Gambia and Tanzania. CTL were also identified to an additional P. falciparum antigen, exported protein 1 (Exp-1), the homologue of which is a protective antigen in a rodent model of malaria. These findings emphasize the diversity of P. falciparum antigens recognized by CD8+ T cells in humans and support the inclusion of components from several antigens in new CTL-inducing vaccines against malaria.

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1132 ◽  
Author(s):  
Souri ◽  
Wierenga ◽  
Mulder ◽  
Jochemsen ◽  
Jager

Uveal melanoma (UM) is the most common primary intraocular malignancy in adults, and gives rise to metastases in 50% of cases. The presence of an inflammatory phenotype is a well-known risk factor for the development of metastases. This inflammatory phenotype is characterized by the presence of high numbers of lymphocytes and macrophages, and a high expression of the HLA Class I and II antigens. An abnormal expression of HLA Class I may influence cytotoxic T lymphocyte (CTL) as well as Natural Killer (NK) cell responses. We provide a comprehensive review regarding the inflammatory phenotype in UM and the expression of locus- and allele-specific HLA Class I and of Class II antigens in primary UM and its metastases. Furthermore, we describe the known regulators and the role of genetics (especially chromosome 3 and BRCA-Associated Protein 1 (BAP1 status)), and, last but not least, the effect of putative therapeutic treatments on HLA expression.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A648-A648
Author(s):  
Kathlynn Brown ◽  
Michael McGuire ◽  
Anuja Pande ◽  
Indu Venugopal

BackgroundImmune checkpoint inhibitors (CIs) have emerged as a revolutionary treatment for several cancer types. Despite significant improvement in prognosis for some patients, there are associated challenges. CIs do not work well on immune-cold tumors, thereby eliciting an insufficient immune response. They are also not as effective in tumors with low mutational burden due to dependance on tumor self-antigens for immune recognition. Therefore, there is a need for a solution to improve the efficacy of CIs to make them applicable to the entire cancer patient population.MethodsTo address this challenge, we have developed a novel immunotherapy capable of delivering previously encountered antigenic peptides specifically to cancer cells and facilitating their presentation through the MHC class I pathway. Our therapy utilizes a synthetic nanoparticle delivery system comprising of three components: a neutral stealth liposome, an encapsulated synthetic immunogenic HLA class I restricted peptide derived from measles virus (MV), and a tumor-targeting peptide on the external surface of the liposome. The targeting peptide results in accumulation of the liposomes specifically inside cancer cells, and facilitates presentation of the MV-derived immunogenic peptides in HLA class I molecules. We refer to this system as TALL (Targeted Antigen Loaded Liposomes). As a result, TALL can generate a strong secondary immune response specifically against the targeted tumor cells in a patient who has been previously vaccinated against or infected by MV. In short, we are attempting to trick the immune system into responding as though the cancer cell is infected with MV without the use of a viral particle. Advantageously, as TALL can provide a potent synthetic antigen specifically to tumor cells, it can convert immune-cold tumors into immune-hot, resulting in a robust cytotoxic T lymphocyte response. Therefore, we conducted pilot studies to determine the efficacy of combining TALL with the anti-PD1 checkpoint inhibitor.ResultsTreatment with TALL alone substantially reduces growth of lung, triple-negative breast, and pancreatic tumors in mice. Treatment with TALL and CI combination therapy showed at least a 10-fold reduction in tumor burden in mice bearing orthotopic breast and pancreatic tumors when compared to using CI treatment alone. The combination treatment also successfully prevented metastasis from occurring.ConclusionsTALL can successfully be used in combination with existing immunotherapies like checkpoint inhibitors, to generate a robust cytotoxic T lymphocyte response directed specifically against the tumor, resulting in a drastic reduction of tumor burden.


2021 ◽  
Author(s):  
Saskia Meyer ◽  
Isaac Blaas ◽  
Ravi Chand Bollineni ◽  
Marina Delic-Sarac ◽  
Trung T Tran ◽  
...  

T-cell epitopes with broad population coverage may form the basis for a new generation of SARS-CoV-2 vaccines. However, published studies on immunoprevalence are limited by small test cohorts, low frequencies of antigen-specific cells and lack of data correlating eluted HLA ligands with T-cell responsiveness. Here, we investigate CD8 T-cell responses to 48 peptides eluted from prevalent HLA alleles, and an additional 84 predicted binders, in a large cohort of convalescents (n=83) and pre-pandemic control samples (n=19). We identify nine conserved SARS-CoV-2 specific epitopes restricted by four of the most prevalent HLA class I alleles in Caucasians, to which responding CD8 T cells are detected in 70-100% of convalescents expressing the relevant HLA allele, including two novel epitopes. We find a strong correlation between immunoprevalence and immunodominance. Using a new algorithm, we predict that a vaccine including these epitopes would induce a T cell response in 83% of Caucasians. Significance Statement: Vaccines that induce broad T-cell responses may boost immunity as protection from current vaccines against SARS-CoV-2 is waning. From a manufacturing standpoint, and to deliver the highest possible dose of the most immunogenic antigens, it is rational to limit the number of epitopes to those inducing the strongest immune responses in the highest proportion of individuals in a population. Our data show that the CD8 T cell response to SARS-CoV-2 is more focused than previously believed. We identify nine conserved SARS-CoV-2 specific CD8 T cell epitopes restricted by four of the most prevalent HLA class I alleles in Caucasians and demonstrate that seven of these are endogenously presented.


2001 ◽  
Vol 184 (11) ◽  
pp. 1369-1373 ◽  
Author(s):  
Hsin Loke ◽  
Delia B. Bethell ◽  
C. X. T. Phuong ◽  
Minh Dung ◽  
Joerg Schneider ◽  
...  

1991 ◽  
Vol 173 (4) ◽  
pp. 1007-1015 ◽  
Author(s):  
A Vitiello ◽  
D Marchesini ◽  
J Furze ◽  
L A Sherman ◽  
R W Chesnut

Transgenic murine lines have been constructed that express a chimeric class I molecule composed of the alpha 1 and alpha 2 domains of HLA-A2.1 and the alpha 3, transmembrane, and cytoplasmic domains of H-2Kb. Upon immunization with influenza virus, transgenic mice developed a strong A2.1Kb-restricted cytotoxic T lymphocyte (CTL) response specific for the same matrix protein epitope that serves as the dominant A2.1-restricted determinant in the equivalent human response. Fine specificity analysis of CTL clones using truncated peptides revealed strong similarity between the response repertoire of transgenic mice and that previously reported using influenza-specific A2.1-restricted CTL clones from humans. This suggests that even when considering T cell responses by different species, the alpha 1 and alpha 2 domains of the restriction element play a dominant role in determining the CTL specific repertoire. Thus, substituting the alpha 3 domain of A2.1 with a murine counterpart has permitted development of a transgenic strain that should serve as an excellent model system in studies of HLA-restricted responses.


2004 ◽  
Vol 65 (9-10) ◽  
pp. S34
Author(s):  
Nicole Frahm ◽  
Karina Yusim ◽  
Peter Hraber ◽  
Sharon Adams ◽  
Franco Marincola ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5431-5431
Author(s):  
Stickel S. Juliane ◽  
Claudia Berlin ◽  
Daniel J. Kowalewski ◽  
Heiko Schuster ◽  
Lothar Kanz ◽  
...  

Abstract Data regarding the graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (SCT) and donor lymphocyte infusion strongly suggest that T lymphocytes play a major role in the rejection of leukemic cells. Immunotherapy directed against leukemia- associated antigens might elicit specific immune responses that may serve to eliminate minimal residual disease after chemotherapy, or enhance the GVL effect after SCT. To achieve this goal there is need to identify appropriate leukemia associated HLA ligands, which are able to induce specific T cell responses. We here aimed to characterize the HLA class I ligandome in AML patients to provide novel tumor associated antigens (TAA) for peptide-based immunotherapy employing our recently implemented approach of direct isolation and identification of naturally presented HLA ligands by affinity chromatography and mass spectrometry (LC-MS/MS) in AML (Stickel et.al., abstract in Blood 2012). Absolute HLA surface expression on AML cells and autologous monocytes and granulocytes was quantified by flow cytometry. HLA class I ligands were isolated from AML cells as well as bone marrow and peripheral blood mononuclear cell (BMNCs/PBMCs) of healthy donors. LC-MS/MS peptide analysis provided qualitative and semi-quantitative information regarding the composition of the respective ligandomes. Comparative analysis of malignant and benign samples served to identify ligandome-derived TAA (LiTAA) and to select peptide vaccine candidates. The most abundantly detected peptide candidates were checked for immunogenicity by ELISpot and confirmed by intracellular interferon-g staining of CD8+ T-cells. Meanwhile 15 AML patients (8 FLT3-ITD mutant) and 35 healthy donors were analyzed. We observed overexpression of HLA class I and II on AML cells as compared to autologous monocytes and granulocytes, with the level of significance reached for HLA class II (p=0,04). A total of more than 12,000 AML derived HLA ligands representing >6,000 different source proteins were identified; of which 2,220 were exclusively represented in AML, but not in healthy PBMC/BMNC. Data mining for broadly represented LiTAA pinpointed 98 TAA as most promising targets. HLA ligands derived from these TAA were presented exclusively on more than 33% of all analyzed AML samples, amongst them already described TAA (e.g. JUP, FAF1) as well as several new leukemia-associated proteins (e.g. MTCH2, METTL7A). Subset analysis of the FLT3-ITD positive AML cohort revealed 21 LiTAA presented exclusively on more than 50% of FLT3-ITD positive AML cases. Additional screening for HLA ligands derived from described leukemia associated antigens revealed overrepresentation for e.g. FLT3, NUSAP, RHAMM and RGS5. Specific CD8+ T cell responses were detected against two A*03 epitope pools (pool 1: APLP2, DKGZ, FAF1, MTCH2; pool 2: KLF2, METTL7A, VCIP1, WIPI1) in AML patients. Notably, the chosen A*03 epitope pools did not elicit specific responses of CTL from healthy donors. Taken together, our HLA class I ligandome analysis in AML for the first time identified naturally presented HLA ligands from patients including a vast array of new leukemia associated antigens representing promising targets for a multipeptide-based immunotherapy approach in AML. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 81 (12) ◽  
pp. 6742-6751 ◽  
Author(s):  
A. J. Frater ◽  
H. Brown ◽  
A. Oxenius ◽  
H. F. Günthard ◽  
B. Hirschel ◽  
...  

ABSTRACT The possession of some HLA class I molecules is associated with delayed progression to AIDS. The mechanism behind this beneficial effect is unclear. We tested the idea that cytotoxic T-cell responses restricted by advantageous HLA class I molecules impose stronger selection pressures than those restricted by other HLA class I alleles. As a measure of the selection pressure imposed by HLA class I alleles, we determined the extent of HLA class I-associated epitope variation in a cohort of European human immunodeficiency virus (HIV)-positive individuals (n = 84). We validated our findings in a second, distinct cohort of African patients (n = 516). We found that key HIV epitopes restricted by advantageous HLA molecules (B27, B57, and B51 in European patients and B5703, B5801, and B8101 in African patients) were more frequently mutated in individuals bearing the restricting HLA than in those who lacked the restricting HLA class I molecule. HLA alleles associated with clinical benefit restricted certain epitopes for which the consensus peptides were frequently recognized by the immune response despite the circulating virus's being highly polymorphic. We found a significant inverse correlation between the HLA-associated hazard of disease progression and the mean HLA-associated prevalence of mutations within epitopes (P = 0.028; R 2 = 0.34). We conclude that beneficial HLA class I alleles impose strong selection at key epitopes. This is revealed by the frequent association between effective T-cell responses and circulating viral escape mutants and the rarity of these variants in patients who lack these favorable HLA class I molecules, suggesting a significant pressure to revert.


Sign in / Sign up

Export Citation Format

Share Document