scholarly journals Public T-cell epitopes shared among SARS-CoV-2 variants are presented on prevalent HLA class I alleles

2021 ◽  
Author(s):  
Saskia Meyer ◽  
Isaac Blaas ◽  
Ravi Chand Bollineni ◽  
Marina Delic-Sarac ◽  
Trung T Tran ◽  
...  

T-cell epitopes with broad population coverage may form the basis for a new generation of SARS-CoV-2 vaccines. However, published studies on immunoprevalence are limited by small test cohorts, low frequencies of antigen-specific cells and lack of data correlating eluted HLA ligands with T-cell responsiveness. Here, we investigate CD8 T-cell responses to 48 peptides eluted from prevalent HLA alleles, and an additional 84 predicted binders, in a large cohort of convalescents (n=83) and pre-pandemic control samples (n=19). We identify nine conserved SARS-CoV-2 specific epitopes restricted by four of the most prevalent HLA class I alleles in Caucasians, to which responding CD8 T cells are detected in 70-100% of convalescents expressing the relevant HLA allele, including two novel epitopes. We find a strong correlation between immunoprevalence and immunodominance. Using a new algorithm, we predict that a vaccine including these epitopes would induce a T cell response in 83% of Caucasians. Significance Statement: Vaccines that induce broad T-cell responses may boost immunity as protection from current vaccines against SARS-CoV-2 is waning. From a manufacturing standpoint, and to deliver the highest possible dose of the most immunogenic antigens, it is rational to limit the number of epitopes to those inducing the strongest immune responses in the highest proportion of individuals in a population. Our data show that the CD8 T cell response to SARS-CoV-2 is more focused than previously believed. We identify nine conserved SARS-CoV-2 specific CD8 T cell epitopes restricted by four of the most prevalent HLA class I alleles in Caucasians and demonstrate that seven of these are endogenously presented.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1644-1644
Author(s):  
Gamal Ramadan ◽  
Barbara Davies ◽  
Viswanath P. Kurup ◽  
Carolyn A. Keever-Taylor

Abstract Invasive pulmonary aspergillosis is a primary cause of morbidity and mortality in immunocompromised patients such as hematopoietic progenitor cell transplant patients. Studies both in patients with allergic bronchopulmonary aspergillosis and murine models demonstrated the importance of a CD4+ Th1 T cell response in conferring protection from infection or preventing disease progression. The role of CD8+ T cell response to A. fumigatus is less clear. Our efforts to develop effective immunotherapeutic approaches against A. fumigatus included preparation of 104 overlapping pentadecapeptides spanning the 427 aa coding region of the aspergillus allergen, Asp f16 previously shown to induce T cell responses. Each 15 aa peptide overlaps the preceding peptide by 11 aa. Monocytes from healthy donors were treated with GM-CSF and IL-4 for 2-3 days to generate immature dendritic cells (fast DC), pulsed with a pool containing 1 μg of each pentadecapeptide, then matured with inflammatory cytokines (IL-1β, IL-6, PGE2 and TNF-alpha) for 2 days. Mature, pulsed fast DC were used to prime proliferative and CTL responses (weekly primings). T cells from 5/5 donors proliferated to the peptide pool. CTL lines were obtained from each of the first two donors that were primed. After 4 weeks the line from donor #2 was strongly cytotoxic to autologous peptide pool-pulsed and aspergillus culture extract-pulsed DC and peptide pool pulsed HLA Class I matched BLCL. Supernatant from this line killed fresh aspergillus conidia. Six of 21 smaller pools of 4-11 peptides showed reactivity. Specificity could be narrowed by screening peptides shared by the pools to 3 candidate peptides. Pool-pulsed BLCL matched for only 1 or 2 HLA alleles were used to demonstrate CTL restriction by HLA-B-3501. A database search of peptides likely to be restricted to B3501 identified the likely sequences as YFKYTAAAL, LPLCSAQTW, and GTRFPQTPM. Each induced similar reactivity when pulsed onto B-3501+ targets. CD8+ T cells steadily increased from 5.2% at week 3 to 19.0% after the 7th priming. CTL activity and IFNγ production were exclusively mediated by CD8+ T cells and CD107a was expressed by 42% of the CD8+ T cells in response to pool-pulsed BLCL indicating degranulation. CTL cross-reacted with pool pulsed B3503+ BLCL but not B3502+, or B3508+ BLCL. B3503+ BLCL presented YFKYTAAAL and to a lesser extent GTRFPQTPM but not peptide LPLCSAQTW. Our data show that DC pulsed with a pentadecapeptide pool from Asp f16 are capable of inducing a CD8+, HLA-Class I restricted Aspergillus-specific T cell response directed to multiple peptides contained within the pool. Further characterization of this system is in progress to identify additional immunogenic peptides from Asp f16 that might be useful in clinical immunotherapy protocols to prime protective immune responses to prevent or treat aspergillus infection.


Author(s):  
Jelle de Wit ◽  
Maarten E Emmelot ◽  
Hugo Meiring ◽  
Jacqueline A M van Gaans-van den Brink ◽  
Cécile A C M van Els ◽  
...  

Abstract Background The re-emergence of mumps among vaccinated young adults has become a global issue. Besides waning of antibody responses, suboptimal induction of T-cell responses may reduce protection. In a recent study, we observed a dominant polyfunctional CD8+ T-cell response after natural mumps virus (MuV) infection that was not present after vaccination. Unraveling the MuV epitope repertoire can provide insight in the specificity, functionality, and breadth of the T-cell response against MuV. Methods Peptides were eluted from human leukocyte antigen (HLA) class I molecules of MuV-infected cells and characterized by advanced mass spectrometry. Selected identified MuV peptides were tested for in vitro and ex vivo immunogenicity. Results In this study, we identified a broad landscape of 83 CD8+ T-cell epitopes of MuV, 41 of which were confirmed based on synthetic peptide standards. For 6 epitopes, we showed induction of an HLA-A*02-restriced CD8+ T-cell response. Moreover, robust T-cell responses against 5 selected MuV epitopes could be detected in all tested mumps patients using peptide/HLA-A*02:01 dextramers. Conclusions The identified CD8+ T-cell epitopes will help to further characterize MuV-specific T-cell immunity after natural MuV infection or vaccination. These MuV epitopes may provide clues for a better understanding of, and possibly for preventing, mumps vaccine failure. We identified for the first time 41 mumps virus (MuV)-specific HLA-A*02 epitopes. For 6 epitopes, CD8+ T-cell responses were confirmed in T cells derived from several mumps cases, and MuV-specific CD8+ T cells could be identified by peptide/dextramer staining.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


Pathogens ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 55 ◽  
Author(s):  
Zhijuan Qiu ◽  
Camille Khairallah ◽  
Brian Sheridan

Listeria monocytogenes (Lm) infection induces robust CD8 T cell responses, which play a critical role in resolving Lm during primary infection and provide protective immunity to re-infections. Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm infection. In this review, the generation of the CD8 T cell response to Lm infection will be discussed. The role of dendritic cell subsets in acquiring and presenting Lm antigens to CD8 T cells and the events that occur during T cell priming and activation will be addressed. CD8 T cell expansion, differentiation and contraction as well as the signals that regulate these processes during Lm infection will be explored. Finally, the formation of memory CD8 T cell subsets in the circulation and in the intestine will be analyzed. Recently, the study of CD8 T cell responses to Lm infection has begun to shift focus from the intravenous infection model to a natural oral infection model as the humanized mouse and murinized Lm have become readily available. Recent findings in the generation of CD8 T cell responses to oral infection using murinized Lm will be explored throughout the review. Finally, CD8 T cell-mediated protective immunity against Lm infection and the use of Lm as a vaccine vector for cancer immunotherapy will be highlighted. Overall, this review will provide detailed knowledge on the biology of CD8 T cell responses after Lm infection that may shed light on improving rational vaccine design.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 424 ◽  
Author(s):  
Beatriz Perdiguero ◽  
Suresh C. Raman ◽  
Cristina Sánchez-Corzo ◽  
Carlos Oscar S. Sorzano ◽  
José Ramón Valverde ◽  
...  

An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4096-4096
Author(s):  
Katayoun Rezvani ◽  
Agnes S. M. Yong ◽  
Stephan Mielke ◽  
Behnam Jafarpour ◽  
Bipin N. Savani ◽  
...  

Abstract Abstract 4096 Poster Board III-1031 We previously demonstrated the immunogenicity of a combined vaccine approach employing two leukemia-associated antigenic peptides, PR1 and WT1 (Rezvani Blood 2008). Eight patients with myeloid malignancies received one subcutaneous 0.3 mg and 0.5 mg dose each of PR1 and WT1 vaccines in Montanide adjuvant, with 100 μg of granulocyte-macrophage colony-stimulating factor (GM-CSF). CD8+ T-cell responses against PR1 or WT1 were detected in all patients as early as 1 week post-vaccination. However, responses were only sustained for 3-4 weeks. The emergence of PR1 or WT1-specific CD8+ T-cells was associated with a significant but transient reduction in minimal residual disease (MRD) as assessed by WT1 expression, suggesting a vaccine-induced anti-leukemia response. Conversely, loss of response was associated with reappearance of WT1 transcripts. We hypothesized that maintenance of sustained or at least repetitive responses may require frequent boost injections. We therefore initiated a phase 2 study of repeated vaccination with PR1 and WT1 peptides in patients with myeloid malignancies. Five patients with acute myeloid leukemia (AML) and 2 patients with myelodysplastic syndrome (MDS) were recruited to receive 6 injections at 2 week intervals of PR1 and WT1 in Montanide adjuvant, with GM-CSF as previously described. Six of 7 patients completed 6 courses of vaccination and follow-up as per protocol, to monitor toxicity and immunological responses. Responses to PR1 or WT1 vaccine were detected in all patients after only 1 dose of vaccine. However, additional boosting did not further increase the frequency of PR1 or WT1-specific CD8+ T-cell response. In 4/6 patients the vaccine-induced T-cell response was lost after the fourth dose and in all patients after the sixth dose of vaccine. To determine the functional avidity of the vaccine-induced CD8+ T-cell response, the response of CD8+ T-cells to stimulation with 2 concentrations of PR1 and WT1 peptides (0.1 and 10 μM) was measured by IC-IFN-γ staining. Vaccination led to preferential expansion of low avidity PR1 and WT1 specific CD8+ T-cell responses. Three patients (patients 4, 6 and 7) returned 3 months following the 6th dose of PR1 and WT1 peptide injections to receive a booster vaccine. Prior to vaccination we could not detect the presence of PR1 and WT1 specific CD8+ T-cells by direct ex-vivo tetramer and IC-IFN-γ assay or with 1-week cultured IFN-γ ELISPOT assay, suggesting that vaccination with PR1 and WT1 peptides in Montanide adjuvant does not induce memory CD8+ T-cell responses. This observation is in keeping with recent work in a murine model where the injection of minimal MHC class I binding peptides derived from self-antigens mixed with IFA adjuvant resulted in a transient effector CD8+ T cell response with subsequent deletion of these T cells and failure to induce CD8+ T cell memory (Bijker J Immunol 2007). This observation can be partly explained by the slow release of vaccine peptides from the IFA depot without systemic danger signals, leading to presentation of antigen in non-inflammatory lymph nodes by non-professional antigen presenting cells (APCs). An alternative explanation for the transient vaccine-induced immune response may be the lack of CD4+ T cell help. In summary these data support the immunogenicity of PR1 and WT1 peptide vaccines. However new approaches will be needed to induce long-term memory responses against leukemia antigens. To avoid tolerance induction we plan to eliminate Montanide adjuvant and use GM-CSF alone. Supported by observations that the in vivo survival of CD8+ T-effector cells against viral antigens are improved by CD4+ helper cells, we are currently attempting to induce long-lasting CD8+ T-cell responses to antigen by inducing CD8+ and CD4+ T-cell responses against class I and II epitopes of WT1 and PR1. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ziwei Xiao ◽  
Zhiyong Ye ◽  
Vikeramjeet Singh Tadwal ◽  
Meixin Shen ◽  
Ee Chee Ren

Author(s):  
Anette Stryhn ◽  
Michael Kongsgaard ◽  
Michael Rasmussen ◽  
Mikkel Nors Harndahl ◽  
Thomas Østerbye ◽  
...  

1.AbstractExamining CD8+ and CD4+ T cell responses after primary Yellow Fever vaccination in a cohort of 210 volunteers, we have identified and tetramer-validated 92 CD8+ and 50 CD4+ T cell epitopes, many inducing strong and prevalent (i.e. immunodominant) T cell responses. Restricted by 40 and 14 HLA-class I and II allotypes, respectively, these responses have wide population coverage and might be of considerable academic, diagnostic and therapeutic interest. The broad coverage of epitopes and HLA overcame the otherwise confounding effects of HLA diversity and non-HLA background providing the first evidence of T cell immunodomination in humans. Also, double-staining of CD4+ T cells with tetramers representing the same HLA-binding core, albeit with different flanking regions, demonstrated an extensive diversification of the specificities of many CD4+ T cell responses. We suggest that this could reduce the risk of pathogen escape, and that multi-tetramer staining is required to reveal the true magnitude and diversity of CD4+ T cell responses. Our T cell epitope discovery approach uses a combination of 1) overlapping peptides representing the entire Yellow Fever virus proteome to search for peptides containing CD4+ and/or CD8+ T cell epitopes, 2) predictors of peptide-HLA binding to suggest epitopes and their restricting HLA allotypes, 3) generation of peptide-HLA tetramers to identify T cell epitopes, and 4) analysis of ex vivo T cell responses to validate the same. This approach is systematic, exhaustive, and can be done in any individual of any HLA haplotype. It is all-inclusive in the sense that it includes all protein antigens and peptide epitopes, and encompasses both CD4+ and CD8+ T cell epitopes. It is efficient and, importantly, reduces the false discovery rate. The unbiased nature of the T cell epitope discovery approach presented here should support the refinement of future peptide-HLA class I and II predictors and tetramer technologies, which eventually should cover all HLA class I and II isotypes. We believe that future investigations of emerging pathogens (e.g. SARS-CoV-2) should include population-wide T cell epitope discovery using blood samples from patients, convalescents and/or long-term survivors, who might all hold important information on T cell epitopes and responses.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 630-630
Author(s):  
Maher K Gandhi ◽  
Rebekah M Brennan ◽  
Leesa Wockner ◽  
Pratip K Chattopadhyay ◽  
Mario Roederer ◽  
...  

Abstract In Epstein-Barr virus (EBV) classical Hodgkin lymphoma (EBV+ cHL), Hodgkin-Reed Sternberg cell antigen presentation is intact, with viral expression restricted to sub-dominant latent-antigens including LMP1/2A. Large epidemiological studies have reported differential HLA-class I (HLA-I) susceptibility to EBV+ cHL. The functional basis for these observations is unknown. HLA-I molecules present viral peptides for recognition by CD8+ T-cells, and it may be that the relative risk of developing EBV+ cHL is due to HLA-I alleles influencing the magnitude of CD8+ T-cell immunity against relevant EBV-specific antigens. However this remains speculative, with immunological evidence lacking. Several non-HLA-I linked genetic susceptibility loci have been identified, and HLA-I associations may simply represent markers for genes of diverse functions that are in linkage disequilibrium to the HLA-I region. We undertook an Australasian Leukaemia and Lymphoma Group study to address this fundamental question, utilizing 4 distinct but complimentary experimental approaches. 1. 9 EBV+ cHL and 11 EBV-ve cHL pre-therapy PBMC samples were tested for ex-vivo IFNγ, TNFα and CD107a CD8+ T-cell immunity, using overlapping LMP1 and LMP2A peptide pools. The non-HRS expressed EBV-lytic protein BZLF1 was a control. Highly stringent FACS gating was used to maximize specificity. Results were interrogated using Profile and SPICE analysis. Interestingly IFNγ, TNFα and CD107 CD8+ T-cell responses in HLA-A*02 EBV+ cHL (but not EBV-ve cHL) patients were greater than non-HLA-A*02 (LMP1 p=0.002; LMP2A p=0.03; combined LMP1/LMP2A p=0.005), whereas BZLF1 was equivalent, indicating that HLA-I provides differential CD8+ T-cell immunity against relevant EBV-latent antigens in EBV+ cHL but not EBV-ve cHL. 2. However, up to 4 different HLA-A/B molecules can potentially present relevant EBV-derived epitopes in each individual, adding a confounding layer of complexity to single allele-based effects. To overcome this and enhance sensitivity, we used the mutant HLA-I 721.221 cell-line (pulsed with LMP2A), transfected with either HLA-A*01, HLA-A*02, HLA-A*03 or HLA-B*08 alleles, as antigen presenting cells to in-vitro expand LMP2A-specific CD8+ T-cells from HLA-A*02 heterozygotes. This found ∼90% of the HLA-I LMP2A response was restricted through HLA-A*02. 3. In contrast to EBV+ cHL, in EBV-post-transplant lymphoproliferative disorders (EBV+ PTLD) the immunogenic EBNA3A/3B/3C latent-antigens are expressed. We compared HLA-I associations in 110 cHL (35% EBV+ cHL) to 153 PTLD (63% EBV+ PTLD) patients. Using Bonferoni corrected statistics, we confirmed that HLA-A*02 and HLA-A*01 homozygotes had lower and higher susceptibility to EBV+ cHL respectively, and that HLA-B*37 was positively associated. Notably, no HLA-I associations with EBV+ PTLD were found. 4. To investigate the impact of HLA-I on the hierarchy of CD8+ T-cell immunity to sub-dominant (LMP1/2A) and immune-dominant (EBNA3A/3B/3C) EBV-latent proteins, we analysed the diversity of HLA-class I restricted T-cells in 30 healthy EBV+ participants. To supplement 30 ‘defined' (i.e. validated) HLA-I EBV-latent antigen epitopes and expand HLA-I coverage, we identified 31 ‘SYFPEITHI' bioinformatically ‘predicted' peptide epitopes for HLA-A*01, HLA-A*03 or HLA-B*37 restricted EBV-latent antigens. All SYFPEITHI scores were ≥21, and thermal stability circular dichroism analysis (HLA-A*01) or MHC stabilization assays on T2 cells (HLA-A*03) confirmed peptide binding to HLA-I. Ex-vivo CD107 CD8+ T-cell assays for the 61 peptides, found that sub-dominant LMP1/2A-specific peptide responses were largely confined to HLA-A*02 (Fig 1A), whilst immuno-dominant CD8+ T-cell responses were stimulated by peptides presented by numerous HLA-I alleles (Fig 1B). These data combined illustrate that differential HLA-I-associated susceptibility to EBV+ cHL reflects altered EBV latent antigen-specific CD8+ T-cell immune hierarchies. For lymphomas expressing a restricted set of poorly immunogenic proteins, even modest CD8+ T-cell responses against relevant tumor-associated proteins confer protection, with broad implications for EBV-vaccine design. Studies are required to determine if similar mechanisms are applicable to non-lymphoid EBV+ malignancies with restricted latency such as undifferentiated nasopharngeal carcinoma. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 20 (7) ◽  
pp. 1048-1054 ◽  
Author(s):  
Xin Zhang ◽  
XiaoJie Huang ◽  
Wei Xia ◽  
WeiHua Li ◽  
Tong Zhang ◽  
...  

ABSTRACTHLA class I alleles have been shown to have differential impacts on the viral load and the outcome of HIV-1 disease progression. In this study, HLA class I types from residents of China with acute HIV-1 infection, diagnosed between 2006 and 2011, were identified and the association between expression of individual HLA alleles and the level of the set point viral load was analyzed. A lower level of set point viral load was found to be associated with the Bw4 homozygote on HLA-B alleles. B*44 and B*57 alleles have also been found to be associated with lower set point viral load. The set point viral load of B*44-positive individuals homozygous for Bw4 was significantly lower than that of B*44-negative individuals homozygous for Bw4 (P= 0.030). The CD4 count declined to <350 in fewer B*44-positive individuals than B*44-negative individuals (X2= 7.295,P= 0.026). B*44-positive individuals had a lower magnitude of p24 pool-specific T cell responses than B*44-negative individuals homozygous for Bw4, though this was not statistically significant. The p24 pool-specific T cell responses were also inversely correlated with lower viral load (rs= −0.88,P= 0.033). Six peptides within p24 were recognized to induce the specific-T cell response in B*44-positive individuals, and the peptide breadth of response was same as that in B*44-negative individuals homozygous for Bw4, but the median magnitude of specific-T cell responses to the recognized peptides in B*44-positive individuals was lower than that in B*44-negative individuals homozygous for Bw4 (P= 0.049). These findings imply that weak p24-specific CD8+T cell responses might play an important role in the control of HIV viremia in B*44 allele-positive individuals. Such studies might contribute to the development of future therapeutic strategies that take into account the genetic background of the patients.


Sign in / Sign up

Export Citation Format

Share Document