scholarly journals Dual Role for Transforming Growth Factor β-Dependent Signaling in Trypanosoma cruzi Infection of Mammalian Cells

2000 ◽  
Vol 68 (4) ◽  
pp. 2077-2081 ◽  
Author(s):  
Belinda S. Hall ◽  
Miercio A. Pereira

ABSTRACT Expression of functional transforming growth factor β (TGF-β) receptors (TβR) is required for the invasion of mammalian cells by the protozoan parasite Trypanosoma cruzi. However, the precise role of this host cell signaling complex in T. cruzi infection is unknown. To investigate the role of the TGF-β signaling pathway, infection levels were studied in the mink lung epithelial cell lines JD1, JM2, and JM3. These cells express inducible mutant TβR1 proteins that cannot induce growth arrest in response to TGF-β but still transmit the signal for TGF-β-dependent gene expression. In the absence of mutant receptor expression, trypomastigotes invaded the cells at a low level. Induction of the mutant receptors caused an increase in infection in all three cell lines, showing that the requirement for TGF-β signaling at invasion can be divorced from TGF-β-induced growth arrest. TGF-β pretreatment of mink lung cells expressing wild-type TβR1 caused a marked enhancement of infection, but no enhancement was seen in JD1, JM2, and JM3 cells, showing that the ability of TGF-β to stimulate infection is associated with growth arrest. Likewise, expression of SMAD7 or SMAD2SA, inhibitors of TGF-β signaling, did not block infection by T. cruzi but did block the enhancement of infection by TGF-β. Taken together, these results show that there is a dual role for TGF-β signaling in T. cruzi infection. The initial invasion of the host cell is independent of both TGF-β-dependent gene expression and growth arrest, but TGF-β stimulation of infection requires a fully functional TGF-β signaling pathway.

2005 ◽  
Vol 172 (11) ◽  
pp. 1399-1411 ◽  
Author(s):  
Scott C. Wesselkamper ◽  
Lisa M. Case ◽  
Lisa N. Henning ◽  
Michael T. Borchers ◽  
Jay W. Tichelaar ◽  
...  

2007 ◽  
Vol 51 (8) ◽  
pp. 2905-2910 ◽  
Author(s):  
Mariana C. Waghabi ◽  
Michelle Keramidas ◽  
Claudia M. Calvet ◽  
Marcos Meuser ◽  
Maria de Nazaré C. Soeiro ◽  
...  

ABSTRACT The antiinflammatory cytokine transforming growth factor β (TGF-β) plays an important role in Chagas disease, a parasitic infection caused by the protozoan Trypanosoma cruzi. In the present study, we show that SB-431542, an inhibitor of the TGF-β type I receptor (ALK5), inhibits T. cruzi-induced activation of the TGF-β pathway in epithelial cells and in cardiomyocytes. Further, we demonstrate that addition of SB-431542 greatly reduces cardiomyocyte invasion by T. cruzi. Finally, SB-431542 treatment significantly reduces the number of parasites per infected cell and trypomastigote differentiation and release. Taken together, these data further confirm the major role of the TGF-β signaling pathway in both T. cruzi infection and T. cruzi cell cycle completion. Our present data demonstrate that small inhibitors of the TGF-β signaling pathway might be potential pharmacological tools for the treatment of Chagas disease.


2002 ◽  
Vol 22 (23) ◽  
pp. 8184-8198 ◽  
Author(s):  
Brian K. Law ◽  
Anna Chytil ◽  
Nancy Dumont ◽  
Elizabeth G. Hamilton ◽  
Mary E. Waltner-Law ◽  
...  

ABSTRACT Transforming growth factor β (TGF-β) induces cell cycle arrest of most nontransformed epithelial cell lines. In contrast, many human carcinomas are refractory to the growth-inhibitory effect of TGF-β. TGF-β overexpression inhibits tumorigenesis, and abolition of TGF-β signaling accelerates tumorigenesis, suggesting that TGF-β acts as a tumor suppressor in mouse models of cancer. A screen to identify agents that potentiate TGF-β-induced growth arrest demonstrated that the potential anticancer agent rapamycin cooperated with TGF-β to induce growth arrest in multiple cell lines. Rapamycin also augmented the ability of TGF-β to inhibit the proliferation of E2F1-, c-Myc-, and V12H-Ras-transformed cells, even though these cells were insensitive to TGF-β-mediated growth arrest in the absence of rapamycin. Rapamycin potentiation of TGF-β-induced growth arrest could not be explained by increases in TGF-β receptor levels or rapamycin-induced dissociation of FKBP12 from the TGF-β type I receptor. Significantly, TGF-β and rapamycin cooperated to induce growth inhibition of human carcinoma cells that are resistant to TGF-β-induced growth arrest, and arrest correlated with a suppression of Cdk2 kinase activity. Inhibition of Cdk2 activity was associated with increased binding of p21 and p27 to Cdk2 and decreased phosphorylation of Cdk2 on Thr160. Increased p21 and p27 binding to Cdk2 was accompanied by decreased p130, p107, and E2F4 binding to Cdk2. Together, these results indicate that rapamycin and TGF-β cooperate to inhibit the proliferation of nontransformed cells and cancer cells by acting in concert to inhibit Cdk2 activity.


2005 ◽  
Vol 167 (4) ◽  
pp. 993-1003 ◽  
Author(s):  
Mariana C. Waghabi ◽  
Michelle Keramidas ◽  
Sabine Bailly ◽  
Wim Degrave ◽  
Leila Mendonça-Lima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document