scholarly journals Role of Nramp1 Deletion inChlamydia Infection in Mice

2000 ◽  
Vol 68 (8) ◽  
pp. 4831-4833 ◽  
Author(s):  
Sukumar Pal ◽  
Ellena M. Peterson ◽  
Luis M. de la Maza

ABSTRACT Elicited macrophages from 129sv mice with a functional deletion of the natural-resistance-associated macrophage protein 1 gene (Nramp1) were shown to be as susceptible as wild-type mice to infection with the Chlamydia trachomatis mouse pneumonitis and L3 serovars and to Chlamydia pneumoniae. Furthermore, the two groups of mice were shown to be similarly susceptible to an intranasal infection with these microorganisms. In conclusion, the Nramp1 gene does not appear to play a major role in the regulation of the susceptibility of mice to a chlamydial infection.

2021 ◽  
Author(s):  
Zengzi Zhou ◽  
Qi Tian ◽  
Luying Wang ◽  
Xin Sun ◽  
Nu Zhang ◽  
...  

Chlamydia trachomatis is a leading infectious cause of infertility in women due to its induction of lasting pathology such as hydrosalpinx. Chlamydia muridarum induces mouse hydrosalpinx because C. muridarum can both invade tubal epithelia directly (as a 1 st hit) and induce lymphocytes to promote hydrosalpinx indirectly (as a 2 nd hit). In the current study, a critical role of CD8 + T cells in chlamydial induction of hydrosalpinx was validated in both wild type C57BL/6J and OT1 transgenic mice. OT1 mice failed to develop hydrosalpinx partially due to the failure of their lymphocytes to recognize chlamydial antigens. CD8 + T cells from naïve C57BL/6J rescued the recipient OT1 mice to develop hydrosalpinx when naïve CD8 + T cells were transferred at the time of infection with Chlamydia . However, when the transfer was delayed for 2 weeks or longer after the chlamydial infection, naïve CD8 + T cells no longer promoted hydrosalpinx. Nevertheless, Chlamydia -immunized CD8 + T cells still promoted significant hydrosalpinx in the recipient OT1 mice even when the transfer was delayed for 3 weeks. Thus, CD8 + T cells must be primed within 2 weeks after chlamydial infection to be pathogenic but once primed, they can promote hydrosalpinx for >3 weeks. However, Chlamydia -primed CD4 + T cells failed to promote chlamydial induction of pathology in OT1 mice. This study has optimized an OT1 mouse-based model for revealing the pathogenic mechanisms of Chlamydia -specific CD8 + T cells.


2005 ◽  
Vol 73 (4) ◽  
pp. 2306-2311 ◽  
Author(s):  
Nathalie S. Duckett ◽  
Sofia Olmos ◽  
Douglas M. Durrant ◽  
Dennis W. Metzger

ABSTRACT Francisella tularensis is a gram-negative intracellular bacterium that can induce lethal respiratory infection in humans and rodents. However, little is known about the role of innate or adaptive immunity in protection from respiratory tularemia. In the present study, the role of interleukin-12 (IL-12) in inducing protective immunity in the lungs against intranasal infection of mice with the live vaccine strain (LVS) of F. tularensis was investigated. It was found that gamma interferon (IFN-γ) and IL-12 were strictly required for protection, since mice deficient in IFN-γ, IL-12 p35, or IL-12 p40 all succumbed to LVS doses that were sublethal for wild-type mice. Furthermore, exogenous IL-12 treatment 24 h before intranasal infection with a lethal dose of LVS (10,000 CFU) significantly decreased bacterial loads in the lungs, livers, and spleens of wild-type BALB/c and C57BL/6 mice and allowed the animals to survive infection; such protection was not observed in IFN-γ-deficient mice. The resistance induced by IL-12 to LVS infection was still observed in NK cell-deficient beige mice but not in CD8−/− mice. These results demonstrate that exogenous IL-12 delivered intranasally can prevent respiratory tularemia through a mechanism that is at least partially dependent upon the expression of IFN-γ and CD8 T cells.


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Susmita Ghosh ◽  
Elizabeth A. Ruelke ◽  
Joshua C. Ferrell ◽  
Maria D. Bodero ◽  
Kenneth A. Fields ◽  
...  

ABSTRACT The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor.


1994 ◽  
Vol 103 (2) ◽  
pp. 135-138 ◽  
Author(s):  
David Huminer ◽  
Rudi Levy ◽  
Silvio Pitlik ◽  
Zmira Samra

The prevalence of mycoplasmal and chlamydial infection was assessed in 83 children undergoing adenoidectomy, tonsillectomy, or both procedures for recurrent adenotonsillitis or obstructive symptoms. Throat smears (surface specimens) and minced adenoids and tonsils (core specimens) were cultured for Mycoplasma spp and for Chlamydia spp. Isolation rates in adenoidal specimens were as follows: Mycoplasma hominis, surface 7.1%, core 2.9%; and Ureaplasma urealyticum, surface 1.4%, core 2.9%. Mycoplasma hominis was also found in tonsillar specimens: surface 14.3%, core 20%. Chlamydia trachomatis was isolated only from a single core adenoidal specimen. The rate of mycoplasma isolation was significantly higher in children with recurrent adenotonsillitis (34.5%) than in those with obstructive symptoms (3.7%). Our findings document colonization of genital mycoplasmas in adenoids and tonsils of children with recurrent adenotonsillitis. Further studies are needed to evaluate the possible pathogenetic role of these microorganisms in adenotonsillar infection.


2002 ◽  
Vol 363 (1) ◽  
pp. 89-94 ◽  
Author(s):  
Victoriano MULERO ◽  
Susan SEARLE ◽  
Jenefer M. BLACKWELL ◽  
Jeremy H. BROCK

Solute carrier 11a1 (Slc11a1; formerly Nramp1; where Nramp stands for natural-resistance-associated macrophage protein) is a proton/bivalent cation antiporter that localizes to late endosomes/lysosomes and controls resistance to pathogens. In the present study the role of Slc11a1 in iron turnover is examined in macrophages transfected with Slc11a1Gly169 (wild-type) or Slc11a1Asp169 (mutant = functional null) alleles. Following direct acquisition of transferrin (Tf)-bound iron via the Tf receptor, iron uptake and release was equivalent in wild-type and mutant macrophages and was not influenced by interferon-γ/lipopolysaccharide activation. Following phagocytosis of [59Fe]Tf—anti-Tf immune complexes, iron uptake was equivalent and up-regulated similarly with activation, but intracellular distribution was markedly different. In wild-type macrophages most iron was in the soluble (60%) rather than insoluble (12%) fraction, with 28% ferritin (Ft)-bound. With activation, the soluble component increased to 82% at the expense of Ft-bound iron (< 5%). In mutant macrophages, 40–50% of iron was in insoluble form, 50–60% was soluble and < 5% was Ft-bound. Western-blot analysis confirmed failure of mutant macrophages to degrade complexes 24h after phagocytic uptake. Confocal microscopy showed that complexes were within lysosome-associated membrane protein 1-positive vesicles in wild-type and mutant macrophages at 30min and 24h, implying failure in the degradative process in mature phagosomes in mutant macrophages. NO-mediated iron release was 2.4-fold higher in activated wild-type macrophages compared with mutant macrophages. Overall, our data suggest that iron acquired by phagocytosis and degradation is retained within the phagosomal compartment in wild-type macrophages, and that NO triggers iron release by direct secretion of phagosomal contents rather than via the cytoplasm.


2020 ◽  
Vol 1 (1) ◽  
pp. 23-31
Author(s):  
N. K. Guskova ◽  
E. V. Verenikina ◽  
T. Yu. Myagkova ◽  
A. P. Menshenina ◽  
E. A. Guskova ◽  
...  

Purpose of the study. To evaluate the role of chronic chlamydial infection in the genesis of proliferative processes in the female genital area.Materials and methods. The study involved 267 women aged from 27 to 43 years. Depending on the severity of the pathological process in the genital tract and the presence of the Chlamydia trachomatis infection, 6 groups were distinguished: 1st — 30 somatically healthy women without pathologies of the female reproductive system; 2nd and 3rd — those with inflammatory processes in the reproductive organs of non-chlamydial (36) and chlamydial nature (38); 4th and 5th — those with proliferative processes in the pelvic organs of non-chlamydial (50) and chlamydial nature (58); 6th — patients with cervical cancer (55). The PCR and ELISA (Chem Well, USA) methods were used to identify the presence of Chlamydia trachomatis. The concentration of estradiol (E) and progesterone (P) (ELISA) in the blood, as well as their ratio (E/P), was determined. The as-obtained data were compared with the results of cytomorphological and ultrasound studies.Results. Proliferative processes in the genital tract are accompanied by a change in the level of female sex hormones, in particular, by a sharp decrease in progesterone in the luteal phase of the cycle against the background of absolute or relative hyperestrogenism. These changes are more pronounced in women with chronic chlamydial infection. A connection between the presence of the infectious agent in question and the severity of hyperplastic processes in the female genital tract is established. A comparison of the obtained morphological data with the blood progesterone content in women without Chlamydia trachomatis showed that an increase in the severity of disorders correlates with a decrease in the level of female hormones. In women infected with Chlamydia trachomatis, the severity of hyperplastic processes shifts to the right, i. e. towards normal progesterone values. Therefore, even at maximal progesterone concentrations close to the reference values, a greater severity of pathological changes is observed.Conclusion. The obtained results demonstrate the undeniable role of chronic chlamydial infection in initiating a hormonal imbalance towards absolute or relative hyperestrogenia with a severe progesterone deficiency. A causal relationship of the Chlamydia trachomatis infectious agent with the severity of hyperplastic processes in the pelvic organs is established. It is concluded that the detection of chlamydial infection should be considered as an essential element in the screening and prevention of hyperplastic processes.


1998 ◽  
Vol 188 (2) ◽  
pp. 351-364 ◽  
Author(s):  
David J. Hackam ◽  
Ori D. Rotstein ◽  
Wei-jian Zhang ◽  
Samantha Gruenheid ◽  
Philippe Gros ◽  
...  

The mechanisms underlying the survival of intracellular parasites such as mycobacteria in host macrophages remain poorly understood. In mice, mutations at the Nramp1 gene (for natural resistance-associated macrophage protein), cause susceptibility to mycobacterial infections. Nramp1 encodes an integral membrane protein that is recruited to the phagosome membrane in infected macrophages. In this study, we used microfluorescence ratio imaging of macrophages from wild-type and Nramp1 mutant mice to analyze the effect of loss of Nramp1 function on the properties of phagosomes containing inert particles or live mycobacteria. The pH of phagosomes containing live Mycobacterium bovis was significantly more acidic in Nramp1- expressing macrophages than in mutant cells (pH 5.5 ± 0.06 versus pH 6.6 ± 0.05, respectively; P &lt;0.005). The enhanced acidification could not be accounted for by differences in proton consumption during dismutation of superoxide, phagosomal buffering power, counterion conductance, or in the rate of proton “leak”, as these were found to be comparable in wild-type and Nramp1-deficient macrophages. Rather, after ingestion of live mycobacteria, Nramp1-expressing cells exhibited increased concanamycin-sensitive H+ pumping across the phagosomal membrane. This was associated with an enhanced ability of phagosomes to fuse with vacuolar-type ATPase–containing late endosomes and/or lysosomes. This effect was restricted to live M. bovis and was not seen in phagosomes containing dead M. bovis or latex beads. These data support the notion that Nramp1 affects intracellular mycobacterial replication by modulating phagosomal pH, suggesting that Nramp1 plays a central role in this process.


1998 ◽  
Vol 111 (19) ◽  
pp. 2855-2866 ◽  
Author(s):  
S. Searle ◽  
N.A. Bright ◽  
T.I. Roach ◽  
P.G. Atkinson ◽  
C.H. Barton ◽  
...  

The murine natural resistance-associated macrophage protein, Nramp1, has multiple pleiotropic effects on macrophage activation and regulates survival of intracellular pathogens including Leishmania, Salmonella and Mycobacterium species. Nramp1 acts as an iron transporter, but precisely how this relates to macrophage activation and/or pathogen survival remains unclear. To gain insight into function, anti-Nramp1 monoclonal and polyclonal antibodies are used here to localise Nramp1 following activation and infection. Confocal microscope analysis in uninfected macrophages demonstrates that both the mutant (infection-susceptible) and wild-type (infection-resistant) forms of the protein localise to the membranes of intracellular vesicular compartments. Gold labelling and electron microscopy defines these compartments more precisely as electron-lucent late endosomal and electron-dense lysosomal compartments, with Nramp1 colocalizing with Lamp1 and cathepsins D and L in both compartments, with macrosialin in late endosomes, and with BSA-5 nm gold in pre-loaded lysosomes. Nramp1 is upregulated with interferon-(gamma) and lipopolysaccaride treatment, coinciding with an increase in labelling in lysosomes relative to late endosomes and apparent dispersion of Nramp1-positive vesicles from a perinuclear location towards the periphery of the cytoplasm along the microtubular network. In both control and activated macrophages, expression of the protein is 3- to 4-fold higher in wild-type compared to mutant macrophages. In Leishmania major-infected macrophages, Nramp1 is observed in the membrane of the pathogen-containing phagosomes, which retain a perinuclear localization in resting macrophages. In Mycobacterium avium-infected resting and activated macrophages, Nramp1-positive vesicles migrated to converge, but not always fuse, with pathogen-containing phagosomes. The Nramp1 protein is thus located where it can have a direct influence on phagosome fusion and the microenvironment of the pathogen, as well as in the more general regulation of endosomal/lysosomal function in macrophages.


1998 ◽  
Vol 66 (4) ◽  
pp. 1607-1612 ◽  
Author(s):  
Albertina F. Swanson ◽  
R. Alan B. Ezekowitz ◽  
Amy Lee ◽  
Cho-chou Kuo

ABSTRACT The role that collectin (mannose-binding protein) may play in the host’s defense against chlamydial infection was investigated. Recombinant human mannose-binding protein was used in the inhibition of cell culture infection by Chlamydia trachomatis(C/TW-3/OT, E/UW-5/Cx, and L2/434/Bu), Chlamydia pneumoniae (AR-39), and Chlamydia psittaci (6BC). Mannose-binding protein (MBP) inhibited infection of all chlamydial strains by at least 50% at 0.098 μg/ml for TW-3 and UW-5, and at 6.25 μg/ml for 434, AR-39, and 6BC. The ability of MBP to inhibit infection with strain L2 was not affected by supplementation with complement or addition of an L2-specific neutralizing monoclonal antibody. Enzyme-linked immunosorbent assay and dot blot analyses showed MBP bound to the surface of the organism to exert inhibition, which appeared to block the attachment of radiolabeled organisms to HeLa cells. Immunoblotting and affinity chromatography indicated that MBP binds to the 40-kDa glycoprotein (the major outer membrane protein) on the outer surface of the chlamydial elementary body. Hapten inhibition assays with monosaccharides and defined oligosaccharides showed that the inhibitory effects of MBP were abrogated by mannose or high-mannose type oligomannose-oligosaccharide. The latter carbohydrate is the ligand of the 40-kDa glycoprotein ofC. trachomatis L2, which is known to mediate attachment, suggesting that the MBP binds to high mannose moieties on the surface of chlamydial organisms. These results suggest that MBP plays a role in first-line host defense against chlamydial infection in humans.


Sign in / Sign up

Export Citation Format

Share Document