scholarly journals Enterotoxigenic Escherichia coli TibA Glycoprotein Adheres to Human Intestine Epithelial Cells

2001 ◽  
Vol 69 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Christoph Lindenthal ◽  
Eric A. Elsinghorst

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human ileum and colon. Two separate invasion loci (tia and tib) that direct noninvasive E. coli strains to adhere to and invade cultured human intestine epithelial cells have previously been isolated from the classical ETEC strain H10407 . The tib locus directs the synthesis of TibA, a 104-kDa outer membrane glycoprotein. Synthesis of TibA is directly correlated with the adherence and invasion phenotypes of the tib locus, suggesting that this protein is an adhesin and invasin. Here we report the purification of TibA and characterization of its biological activity. TibA was purified by continuous-elution preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified TibA was biotin labeled and then shown to bind to HCT8 human ileocecal epithelial cells in a specific and saturable manner. Unlabeled TibA competed with biotin-labeled TibA, suggesting the presence of a specific TibA receptor in HCT8 cells. These results show that TibA acts as an adhesin. Polyclonal anti-TibA antiserum inhibited invasion of ETEC strain H10407 and of recombinantE. coli bearing tib locus clones, suggesting that TibA also acts as an invasin. The ability of TibA to direct epithelial cell adhesion suggests a role for this protein in ETEC pathogenesis.

2000 ◽  
Vol 68 (12) ◽  
pp. 6595-6601 ◽  
Author(s):  
Joseph G. Mammarappallil ◽  
Eric A. Elsinghorst

ABSTRACT In vitro studies have shown that enterotoxigenic Escherichia coli (ETEC) strains are capable of invading cultured epithelial cells derived from the human ileum and colon. Two separate invasion loci (tia and tib) have previously been isolated from the classical ETEC strain H10407 . The tialocus has been shown to direct the synthesis of Tia, a 25-kDa outer membrane protein. Tia is sufficient to confer the adherence and invasion phenotypes on laboratory stains of E. coli, suggesting that this protein is an adhesin and invasin. Here we report the purification of Tia and characterize its biological activity. Tia was purified by electroelution of outer membrane proteins that had been separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified Tia was labeled with biotin and then shown to bind to HCT8 human ileocecal epithelial cells in a specific and saturable manner. Polyclonal anti-Tia antiserum blocked this binding. These results show that Tia acts as an adhesin. Polyclonal anti-Tia antiserum also inhibited invasion of recombinant E. coli bearingtia clones, indirectly suggesting that Tia may also act as an invasin. We predict Tia to contain eight transmembrane amphipathic β-sheets with four loops that are exposed on the surface of the bacterial cell. A peptide corresponding to 19 residues in one of the four predicted surface-exposed loops inhibits Tia-mediated epithelial cell invasion. Seeding HCT8 cells on wells coated with purified Tia reduced Tia-mediated epithelial cell invasion. Together, these results indicate that Tia is an invasin and adhesin that binds a specific receptor on HCT8 cells.


1999 ◽  
Vol 67 (8) ◽  
pp. 4084-4091 ◽  
Author(s):  
Christoph Lindenthal ◽  
Eric A. Elsinghorst

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strain H10407 is capable of invading epithelial cell lines derived from the human ileocecum and colon in vitro. Two separate chromosomally encoded invasion loci (tia and tib) have been cloned from this strain. These loci direct nonadherent and noninvasive laboratory strains of E. coli to adhere to and invade cultured human intestinal epithelial cells. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane protein that is directly correlated with the adherence and invasion phenotypes. TibA is synthesized as a 100-kDa precursor (preTibA) that must be modified for biological activity. Outer membranes of recombinant E. coliexpressing TibA or preTibA were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted to nitrocellulose. The presence of glycoproteins was detected by oxidization of carbohydrates with periodate and labeling with hydrazide-conjugated digoxigenin. Only TibA could be detected as a glycoprotein. Complementation experiments with tib deletion mutants of ETEC strain H10407 demonstrate that the TibA glycoprotein is expressed in H10407, that the entire tib locus is required for TibA synthesis, and that TibA is the only glycoprotein produced by H10407. Protease treatment of intact H10407 cells removes the carbohydrates on TibA, suggesting that they are surface exposed. TibA shows homology with AIDA-I from diffuse-adhering E. coliand with pertactin precursor from Bordetella pertussis. Both pertactin and AIDA-I are members of the autotransporter family of outer membrane proteins and are afimbrial adhesins that play an important role in the virulence of these organisms. Analysis of the predicted TibA amino acid sequence indicates that TibA is also an autotransporter. Analysis of the tib locus DNA sequence revealed an open reading frame with similarity to RfaQ, a glycosyltransferase. The product of this tib locus open reading frame is proposed to be responsible for TibA modification. These results suggest that TibA glycoprotein acts as an adhesin that may participate in the disease process.


2002 ◽  
Vol 70 (3) ◽  
pp. 1530-1537 ◽  
Author(s):  
James M. Fleckenstein ◽  
James T. Holland ◽  
David L. Hasty

ABSTRACT We have previously shown that enterotoxigenic invasion protein A (Tia), a 25-kDa outer membrane protein encoded on an apparent pathogenicity island of enterotoxigenic Escherichia coli (ETEC) strain H10407, mediates attachment to and invasion into cultured human gastrointestinal epithelial cells. The epithelial cell receptor(s) for Tia has not been identified. Here we show that Tia interacts with cell surface heparan sulfate proteoglycans. Recombinant E. coli expressing Tia mediated invasion into wild-type epithelial cell lines but not invasion into proteoglycan-deficient cells. Furthermore, wild-type eukaryotic cells, but not proteoglycan-deficient eukaryotic cells, attached to immobilized polyhistidine-tagged recombinant Tia (rTia). Binding of epithelial cells to immobilized rTia was inhibited by exogenous heparan sulfate glycosaminoglycans but not by hyaluronic acid, dermatan sulfate, or chondroitin sulfate. Similarly, pretreatment of eukaryotic cells with heparinase I, but not pretreatment of eukaryotic cells with chrondroitinase ABC, inhibited attachment to rTia. In addition, we also observed heparin binding to both immobilized rTia and recombinant E. coli expressing Tia. Heparin binding was inhibited by a synthetic peptide representing a surface loop of Tia, as well as by antibodies directed against this peptide. Additional studies indicated that Tia, as a prokaryotic heparin binding protein, may also interact via sulfated proteoglycan molecular bridges with a number of mammalian heparan sulfate binding proteins. These findings suggest that the binding of Tia to host epithelial cells is mediated at least in part through heparan sulfate proteoglycans and that ETEC belongs on the growing list of pathogens that utilize these ubiquitous cell surface molecules as receptors.


2006 ◽  
Vol 74 (4) ◽  
pp. 2233-2244 ◽  
Author(s):  
Alison S. Low ◽  
Francis Dziva ◽  
Alfredo G. Torres ◽  
Jessenya L. Martinez ◽  
Tracy Rosser ◽  
...  

ABSTRACT Recent transposon mutagenesis studies with two enterohemorrhagic Escherichia coli (EHEC) strains, a sero- type O26:H- strain and a serotype O157:H7 strain, led to identification of a putative fimbrial operon that promotes colonization of young calves (1 to 2 weeks old). The distribution of the gene encoding the major fimbrial subunit present in O-island 61 of EHEC O157:H7 in a characterized set of 78 diarrheagenic E. coli strains was determined, and this gene was found in 87.2% of the strains and is therefore not an EHEC-specific region. The cluster was amplified by long-range PCR and cloned into the inducible expression vector pBAD18. Induced expression in E. coli K-12 led to production of fimbriae, as demonstrated by transmission electron microscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The fimbriae were purified, and sera to the purified major subunit were raised and used to demonstrate expression from wild-type E. coli O157:H7 strains. Induced expression of the fimbriae, designated F9 fimbriae, was used to characterize binding to bovine epithelial cells, bovine gastrointestinal tissue explants, and extracellular matrix components. The fimbriae promoted increases in the levels of E. coli K-12 binding only to bovine epithelial cells. In contrast, induced expression of F9 fimbriae in E. coli O157:H7 significantly reduced adherence of the bacteria to bovine gastrointestinal explant tissue. This may have been due to physical hindrance of type III secretion-dependent attachment. The main F9 subunit gene was deleted in E. coli O157:H7, and the resulting mutant was compared with the wild-type strain for colonization in weaned cattle. While the shedding levels of the mutant were reduced, the animals were still colonized at the terminal rectum, indicating that the adhesin is not responsible for the rectal tropism observed but may contribute to colonization at other sites, as demonstrated previously with very young animals.


1980 ◽  
Vol 29 (2) ◽  
pp. 704-713 ◽  
Author(s):  
Henk Gankema ◽  
Jan Wensink ◽  
Pieter A. M. Guinée ◽  
Wim H. Jansen ◽  
Bernard Witholt

The high-molecular-weight material released into the medium by Escherichia coli AP1, an enterotoxigenic strain of porcine origin, has been isolated and resolved into two clearly distinct fractions, based on sucrose density gradient and differential centrifugation, chemical analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and freeze-fracture electron microscopy. These two fractions, referred to as “medium vesicles” and “medium lipopolysaccharides”, were compared with the cellular outer and cytoplasmic membranes, the periplasmic fraction, and the cytoplasmic fraction. The medium vesicles closely resembled outer membrane and accounted for 3 to 5% of the total cellular outer membrane. They contained most of the heat-labile enterotoxin (LT) activity released into the medium by E. coli AP1. The medium lipopolysaccharide consisted mostly of lipopolysaccharide and a small amount of outer membrane and contained relatively little LT activity. Based on experiments with E. coli K-12 strains, in which about 5% of the newly synthesized outer membrane is lost from areas of outer membrane synthesis, it is proposed that enterotoxigenic E. coli strains release LT as part of such newly synthesized outer membrane fragments and that released outer membrane fragments may function as physiologically significant LT carriers.


2006 ◽  
Vol 74 (4) ◽  
pp. 2245-2258 ◽  
Author(s):  
James M. Fleckenstein ◽  
Koushik Roy ◽  
Julia F. Fischer ◽  
Michael Burkitt

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) remains a formidable cause of diarrheal illness worldwide. At present, there is no vaccine that provides broad-based protection against ETEC. A ′phoA-based self-cloning mutagenesis system, TnphoA.ts, employed to identify novel ETEC surface antigens, led to identification of an ETEC two-partner secretion locus (etpBAC) on the pCS1 virulence plasmid of prototype strain H10407. Cloning and expression of etpBAC in recombinant E. coli LMG194(pJY019) resulted in secretion of a high-molecular-weight (HMW) glycosylated exoprotein. This glycoprotein, EtpA, exhibits linear peptide sequence and predicted structural homologies with known HMW adhesins produced by other two-partner secretion loci. Antibodies directed against recombinant EtpA (anti-rEtpA.6H) recognized an HMW protein in culture supernatants of ETEC strains H10407 and LMG194(pJY019) but not in culture supernatant of strain H10407-P, which lacks the 92-kb pCS1 plasmid, or an isogenic etpA mutant. etpA mutants were deficient in adherence to intestinal epithelial cells in vitro, and anti-rEtpA.6H antibodies inhibited association of H10407 with target epithelial cells. Cloning and expression of etpB in recombinant E. coli were sufficient to confer adherence. Screening of multiple ETEC isolates for the etpBAC locus by colony hybridization and by EtpA immunoblotting suggested that EtpA is one of the most common antigens secreted by these pathogens. Together, these results indicate that the newly identified ETEC two-partner secretion locus directs the secretion of a high-molecular-weight glycosylated protein, EtpA, that in concert with the putative EtpB transporter participates in adherence of H10407 to epithelial cells, thereby expanding the repertoire of potential ETEC virulence proteins and vaccine candidates.


2003 ◽  
Vol 71 (3) ◽  
pp. 1470-1480 ◽  
Author(s):  
Joel D. Schilling ◽  
Steven M. Martin ◽  
David A. Hunstad ◽  
Kunal P. Patel ◽  
Matthew A. Mulvey ◽  
...  

ABSTRACT The gram-negative bacterium Escherichia coli is the leading cause of urinary tract infection. The interaction between type 1 piliated E. coli and bladder epithelial cells leads to the rapid production of inflammatory mediators, such as interleukin-6 (IL-6) and IL-8. Conflicting reports have been published in the literature regarding the mechanism by which uroepithelial cells are activated by type 1 piliated E. coli. In particular, the role of lipopolysaccharide (LPS) in these responses has been an area of significant debate. Much of the data arguing against LPS-mediated activation of bladder epithelial cells have come from studies using a renal epithelial cell line as an in vitro model of the urinary epithelium. In this report, we analyzed three bladder epithelial cell lines and demonstrated that they all respond to LPS. Furthermore, the LPS responsivity of the cell lines directly correlated with their ability to generate IL-6 after E. coli stimulation. The LPS receptor complex utilized by the bladder epithelial cell lines included CD14 and Toll-like receptors, and signaling involved the activation of NF-κB and p38 mitogen-activated protein kinase. Also, reverse transcription-PCR analysis demonstrated that bladder epithelial cells express CD14 mRNA. Thus, the molecular machinery utilized by bladder epithelial cells for the recognition of E. coli is very similar to that described for traditional innate immune cells, such as macrophages. In contrast, the A498 renal epithelial cell line did not express CD14, was hyporesponsive to LPS stimulation, and demonstrated poor IL-6 responses to E. coli.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helai Hesham ◽  
Alissa J. Mitchell ◽  
Agnes Bergerat ◽  
Kristin Hung ◽  
Caroline M. Mitchell

AbstractWe compared the effect of commercial vaginal douching products on Lactobacillus crispatus, L. jensenii, L. gasseri, L. iners, E. coli, and immortalized vaginal epithelial cells (VK2). All studied douching products (vinegar, iodine and baking soda based) induced epithelial cell death, and all inhibited growth of E. coli. Co-culture of vaginal epithelial cells with any of the lactobacilli immediately following exposure to douching products resulted in a trend to less human cell death. However, co-culture of epithelial cells with L. iners was associated with higher production of IL6 and IL8, and lower IL1RA regardless of presence or type of douching solution. Co-culture with L. crispatus or L. jensenii decreased IL6 production in the absence of douches, but increased IL6 production after exposure to vinegar. Douching products may be associated with epithelial disruption and inflammation, and may reduce the anti-inflammatory effects of beneficial lactobacilli.


2005 ◽  
Vol 71 (12) ◽  
pp. 8855-8863 ◽  
Author(s):  
Anne-Katharina Sonntag ◽  
Martina Bielaszewska ◽  
Alexander Mellmann ◽  
Nadine Dierksen ◽  
Peter Schierack ◽  
...  

ABSTRACT Thirteen Escherichia coli strains harboring stx 2e were isolated from 11,056 human stools. This frequency corresponded to the presence of the stx 2e allele in 1.7% of all Shiga toxin-producing E. coli (STEC) strains. The strains harboring stx 2e were associated with mild diarrhea (n = 9) or asymptomatic infections (n= 4). Because STEC isolates possessing stx 2e are porcine pathogens, we compared the human STEC isolates with stx 2e-harboring E. coli isolated from piglets with edema disease and postweaning diarrhea. All pig isolates possessed the gene encoding the F18 adhesin, and the majority possessed adhesin involved in diffuse adherence; these adhesins were absent from all the human STEC isolates. In contrast, the high-pathogenicity island encoding an iron uptake system was found only in human isolates. Host-specific patterns of interaction with intestinal epithelial cells were observed. All human isolates adhered to human intestinal epithelial cell lines T84 and HCT-8 but not to pig intestinal epithelial cell line IPEC-J2. In contrast, the pig isolates completely lysed human epithelial cells but not IPEC-J2 cells, to which most of them adhered. Our data demonstrate that E. coli isolates producing Shiga toxin 2e have imported specific virulence and fitness determinants which allow them to adapt to the specific hosts in which they cause various forms of disease.


2000 ◽  
Vol 68 (5) ◽  
pp. 2766-2774 ◽  
Author(s):  
James M. Fleckenstein ◽  
Luther E. Lindler ◽  
Eric A. Elsinghorst ◽  
James B. Dale

ABSTRACT Studies of the pathogenesis of enterotoxigenic Escherichia coli (ETEC) have largely centered on extrachromosomal determinants of virulence, in particular the plasmid-encoded heat-labile (LT) and heat-stable enterotoxins and the colonization factor antigens. ETEC causes illnesses that range from mild diarrhea to severe cholera-like disease. These differences in disease severity are not readily accounted for by our current understanding of ETEC pathogenesis. Here we demonstrate that Tia, a putative adhesin of ETECH10407 , is encoded on a large chromosomal element of approximately 46 kb that shares multiple features with previously described E. coli pathogenicity islands. Further analysis of the region downstream from tia revealed the presence of several candidate open reading frames (ORFs) in the same transcriptional orientation as tia. The putative proteins encoded by these ORFs bear multiple motifs associated with bacterial secretion apparatuses. An in-frame deletion in one candidate gene identified here as leoA (labile enterotoxin output) resulted in marked diminution of secretion of the LT enterotoxin and lack of fluid accumulation in a rabbit ileal loop model of infection. Although previous studies have suggested that E. coli lacks the capacity to secrete LT, our studies show that maximal release of LT from the periplasm of H10407 is dependent on one or more elements encoded on a pathogenicity island.


Sign in / Sign up

Export Citation Format

Share Document