scholarly journals Identification of a Gene within a Pathogenicity Island of Enterotoxigenic Escherichia coli H10407 Required for Maximal Secretion of the Heat-Labile Enterotoxin

2000 ◽  
Vol 68 (5) ◽  
pp. 2766-2774 ◽  
Author(s):  
James M. Fleckenstein ◽  
Luther E. Lindler ◽  
Eric A. Elsinghorst ◽  
James B. Dale

ABSTRACT Studies of the pathogenesis of enterotoxigenic Escherichia coli (ETEC) have largely centered on extrachromosomal determinants of virulence, in particular the plasmid-encoded heat-labile (LT) and heat-stable enterotoxins and the colonization factor antigens. ETEC causes illnesses that range from mild diarrhea to severe cholera-like disease. These differences in disease severity are not readily accounted for by our current understanding of ETEC pathogenesis. Here we demonstrate that Tia, a putative adhesin of ETECH10407 , is encoded on a large chromosomal element of approximately 46 kb that shares multiple features with previously described E. coli pathogenicity islands. Further analysis of the region downstream from tia revealed the presence of several candidate open reading frames (ORFs) in the same transcriptional orientation as tia. The putative proteins encoded by these ORFs bear multiple motifs associated with bacterial secretion apparatuses. An in-frame deletion in one candidate gene identified here as leoA (labile enterotoxin output) resulted in marked diminution of secretion of the LT enterotoxin and lack of fluid accumulation in a rabbit ileal loop model of infection. Although previous studies have suggested that E. coli lacks the capacity to secrete LT, our studies show that maximal release of LT from the periplasm of H10407 is dependent on one or more elements encoded on a pathogenicity island.

2001 ◽  
Vol 69 (2) ◽  
pp. 937-948 ◽  
Author(s):  
Lila Lalioui ◽  
Chantal Le Bouguénec

ABSTRACT We recently described a new afimbrial adhesin, AfaE-VIII, produced by animal strains associated with diarrhea and septicemia and by human isolates associated with extraintestinal infections. Here, we report that the afa-8 operon, encoding AfaE-VIII adhesin, from the human blood isolate Escherichia coli AL862 is carried by a 61-kb genomic region with characteristics typical of a pathogenicity island (PAI), including a size larger than 10 kb, the presence of an integrase-encoding gene, the insertion into a tRNA locus (pheR), and the presence of a small direct repeat at each extremity. Moreover, the G+C content of the afa-8 operon (46.4%) is lower than that of the E. coli K-12/MG1655 chromosome (50.8%). Within this PAI, designated PAI IAL862, we identified open reading frames able to code for products similar to proteins involved in sugar utilization. Four probes spanning these sequences hybridized with 74.3% of pathogenicafa-8-positive E. coli strains isolated from humans and animals, 25% of human pathogenic afa-8-negativeE. coli strains, and only 8% of fecal strains (P = 0.05), indicating that these sequences are strongly associated with the afa-8 operon and that this genetic association may define a PAI widely distributed among human and animal afa-8-positive strains. One of the distinctive features of this study is that E. coli AL862 also carries another afa-8-containing PAI (PAI IIAL862), which appeared to be similar in size and genetic organization to PAI IAL862 and was inserted into the pheV gene. We investigated the insertion sites of afa-8-containing PAI in human and bovine pathogenic E. coli strains and found that this PAI preferentially inserted into the pheV gene.


2013 ◽  
Vol 305 (11) ◽  
pp. C1185-C1191 ◽  
Author(s):  
Abhisek Ghosal ◽  
Nabendu S. Chatterjee ◽  
Tristan Chou ◽  
Hamid M. Said

Infections with enteric pathogens like enterotoxigenic Escherichia coli ( ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and -secreted ETEC component and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of human thiamin transporter-1 and -2 (hTHTR1 and hTHTR2) at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E. coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin and is associated with a decrease in the expression of intestinal thiamin transporters.


2002 ◽  
Vol 70 (3) ◽  
pp. 1056-1068 ◽  
Author(s):  
Jianmei Yu ◽  
Frederick Cassels ◽  
Tanya Scharton-Kersten ◽  
Scott A. Hammond ◽  
Antoinette Hartman ◽  
...  

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) diarrheal disease is a worldwide problem that may be addressed by transcutaneous delivery of a vaccine. In several human settings, protective immunity has been associated with immune responses to E. coli colonization factors and to the heat-labile toxin that induces the diarrhea. In this set of animal studies, transcutaneous immunization (TCI) using recombinant colonization factor CS6 and cholera toxin (CT) or heat-labile enterotoxin (LT) as the adjuvant induced immunoglobulin G (IgG) and IgA anti-CS6 responses in sera and stools and antibody responses that recognized CS6 antigen in its native configuration. The antitoxin immunity induced by TCI was also shown to protect against enteric toxin challenge. Although immunization with LT via the skin induced mucosal secretory IgA responses to LT, protection could also be achieved by intravenous injection of the immune sera. Finally, a malaria vaccine antigen, merzoite surface protein 142 administered with CT as the adjuvant, induced both merzoite surface protein antibodies and T-cell responses while conferring protective antitoxin immunity, suggesting that both antiparasitic activity and antidiarrheal activity can be obtained with a single vaccine formulation. Overall, our results demonstrate that relevant colonization factor and antitoxin immunity can be induced by TCI and suggest that an ETEC traveler's diarrhea vaccine could be delivered by using a patch.


2006 ◽  
Vol 69 (2) ◽  
pp. 412-416 ◽  
Author(s):  
MICHAEL A. GRANT ◽  
JINXIN HU ◽  
KAREN C. JINNEMAN

A multiplex real-time PCR method was developed for detection of heat-labile and heat-stable toxin genes in enterotoxigenic Escherichia coli. Approximately 10 CFU per reaction mixture could be detected in rinsates from produce samples. Several foods representative of varieties previously shown to have caused enterotoxigenic E. coli outbreaks were spiked and enriched for 4 or 6 h. Both heat-labile and heat-stable toxin genes could be detected in the foods tested, with the exception of hot sauce, with threshold cycle values ranging from 25.2 to 41.1. A procedure using membrane filtration which would allow enumeration of the enterotoxigenic E. coli population in a food sample in less than 28 h by real-time PCR analysis of colonies picked from media highly selective for E. coli was also developed.


2001 ◽  
Vol 69 (9) ◽  
pp. 5864-5873 ◽  
Author(s):  
Tooru Taniguchi ◽  
Yukihiro Akeda ◽  
Ayako Haba ◽  
Yoko Yasuda ◽  
Koichiro Yamamoto ◽  
...  

ABSTRACT The assembly of pilus colonization factor antigen III (CFA/III) of enterotoxigenic Escherichia coli (ETEC) requires the processing of CFA/III major pilin (CofA) by a prepilin peptidase (CofP), similar to other type IV pilus formation systems. CofA is produced initially as a 26.5-kDa preform pilin (prepilin) and then processed to a 20.5-kDa mature pilin by CofP which is predicted to be localized in the inner membrane. In the present experiment, we determined the nucleotide sequence of the whole region for CFA/III formation and identified a cluster of 14 genes, includingcofA and cofP. Several proteins encoded bycof genes were similar to previously described proteins, such as the toxin-coregulated pili of Vibrio cholerae and the bundle-forming pili of enteropathogenic E. coli. The G+C content of the cof gene cluster was 37%, which was significantly lower than the average for the E. coli genome (50%). The introduction of a recombinant plasmid containing thecof gene cluster into the E. coli K-12 strain conferred CFA/III biogenesis and the ability of adhesion to the human colon carcinoma cell line Caco-2. This is the first report of a complete nucleotide sequence of the type IV pili found in human ETEC, and our results provide a useful model for studying the molecular mechanism of CFA/III biogenesis and the role of CFA/III in ETEC infection.


2015 ◽  
Vol 83 (5) ◽  
pp. 1893-1903 ◽  
Author(s):  
Daniela Gutiérrez ◽  
Mirka Pardo ◽  
David Montero ◽  
Angel Oñate ◽  
Mauricio J. Farfán ◽  
...  

EnterotoxigenicEscherichia coli(ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avianE. colistrains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with atleAmutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression oftleAconferred the capacity for adherence to nonadherentE. coliHB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response.


2021 ◽  
Vol 7 ◽  
Author(s):  
Xinyu Zhang ◽  
Shupei Yu ◽  
Darong Cheng ◽  
Yu Feng ◽  
Yuefei Yang ◽  
...  

To develop an attenuated vaccine candidate against K88ac enterotoxigenic Escherichia coli (ETEC), a novel Escherichia coli (E. coli) K88ac LT(S63K)ΔSTb with LT(S63K) mutation and ST1 deletion was generated using site mutagenesis and λ-Red homologous recombination based on wild paternal ETEC strain C83902. E. coli K88ac LT(S63K)ΔSTb showed very similar fimbriae expression and growth kinetics to the wild strain C83902, but it was significantly attenuated according to the results of a rabbit ligated ileal loop assay and mouse infection study. Oral inoculation with E. coli K88ac LT(S63K)ΔSTb stimulated the mucosa immune response and induced the secretion of IgA to K88ac in the intestines in mice. A challenge experiment revealed that the attenuated strain provided efficient protection against C83902 in the following 7 days and at the 24th day post-inoculation, suggesting that the attenuated isolate could act as an ecological protectant and vaccine in preventing K88ac ETEC.


1979 ◽  
Vol 9 (4) ◽  
pp. 493-497
Author(s):  
M H Merson ◽  
R B Sack ◽  
A K Kibriya ◽  
A Al-Mahmood ◽  
Q S Adamed ◽  
...  

Diagnosis of enterotoxigenic Escherichia coli diarrhea was made in 109 adult males with an acute dehydrating cholera-like syndrome in Dacca, Bangladesh, by testing 10 colonies isolated from admission stool specimens for production of heat-labile and heat-stable toxins. Toxin testing of one colony yielded a diagnosis in 92% of the cases, testing of two colonies yielded a diagnosis in 95% of the cases, testing of a pool of 5 colonies yielded a diagnosis in 95% of the cases, and testing of a pool of 10 colonies yielded a diagnosis in 96% of the cases. From stool cultures obtained on subsequent days, toxin testing of individual colonies and pools revealed diminished efficacy of pooling with decreasing numbers of enterotoxin-positive isolates in the pool. To detect the presence of enterotoxigenic E. coli in stools, toxin testing of 5 individual isolates and a pool of 10 colonies was found to be almost as effective as the testing of 10 individual isolates.


1999 ◽  
Vol 181 (18) ◽  
pp. 5847-5851 ◽  
Author(s):  
Thomas G. Duthy ◽  
Lothar H. Staendner ◽  
Paul A. Manning ◽  
Michael W. Heuzenroeder

ABSTRACT We have sequenced the entire region of DNA required for the biosynthesis of CS5 pili from enterotoxigenic Escherichia coli O115:H40 downstream of the major subunit gene, designatedcsfA (for coli surface factor five A). Five more open reading frames (ORFs) (csfB, csfC,csfE, csfF, and csfD) which are transcribed in the same direction as the major subunit and are flanked by a number of insertion sequence regions have been identified. T7 polymerase-mediated overexpression of the cloned csf ORFs confirmed protein sizes based on the DNA sequences that encode them. The expression of only the csf region in E. coli K-12 resulted in the hemagglutination of human erythrocytes and the cell surface expression of CS5 pili, suggesting that the cluster contains all necessary information for CS5 pilus biogenesis and function.


Sign in / Sign up

Export Citation Format

Share Document