scholarly journals Gamma Interferon-Induced Inhibition ofToxoplasma gondii in Astrocytes Is Mediated by IGTP

2001 ◽  
Vol 69 (9) ◽  
pp. 5573-5576 ◽  
Author(s):  
Sandra K. Halonen ◽  
Gregory A. Taylor ◽  
Louis M. Weiss

ABSTRACT Toxoplasma gondii is an important pathogen in the central nervous system, causing a severe and often fatal encephalitis in patients with AIDS. Gamma interferon (IFN-γ) is the main cytokine preventing reactivation of Toxoplasma encephalitis in the brain. Microglia are important IFN-γ-activated effector cells controlling the growth of T. gondii in the brain via a nitric oxide (NO)-mediated mechanism. IFN-γ can also activate astrocytes to inhibit the growth of T. gondii. Previous studies found that the mechanism in murine astrocytes is independent of NO and all other known anti-Toxoplasma mechanisms. In this study we investigated the role of IGTP, a recently identified IFN-γ-regulated gene, in IFN-γ inhibition of T. gondii in murine astrocytes. Primary astrocytes were cultivated from IGTP-deficient mice, treated with IFN-γ, and then tested for anti-Toxoplasma activity. In wild-type astrocytesT. gondii growth was significantly inhibited by IFN-γ, whereas in astrocytes from IGTP-deficient mice IFN-γ did not cause a significant inhibition of growth. Immunoblot analysis confirmed that IFN-γ induced significant levels of IGTP in wild-type murine astrocytes within 24 h. These results indicate that IGTP plays a central role in the IFN-γ-induced inhibition of T. gondii in murine astrocytes.

2005 ◽  
Vol 79 (21) ◽  
pp. 13509-13518 ◽  
Author(s):  
Jürgen Hausmann ◽  
Axel Pagenstecher ◽  
Karen Baur ◽  
Kirsten Richter ◽  
Hanns-Joachim Rziha ◽  
...  

ABSTRACT Borna disease virus (BDV) frequently causes meningoencephalitis and fatal neurological disease in young but not old mice of strain MRL. Disease does not result from the virus-induced destruction of infected neurons. Rather, it is mediated by H-2 k -restricted antiviral CD8 T cells that recognize a peptide derived from the BDV nucleoprotein N. Persistent BDV infection in mice is not spontaneously cleared. We report here that N-specific vaccination can protect wild-type MRL mice but not mutant MRL mice lacking gamma interferon (IFN-γ) from persistent infection with BDV. Furthermore, we observed a significant degree of resistance of old MRL mice to persistent BDV infection that depended on the presence of CD8 T cells. We found that virus initially infected hippocampal neurons around 2 weeks after intracerebral infection but was eventually cleared in most wild-type MRL mice. Unexpectedly, young as well as old IFN-γ-deficient MRL mice were completely susceptible to infection with BDV. Moreover, neurons in the CA1 region of the hippocampus were severely damaged in most diseased IFN-γ-deficient mice but not in wild-type mice. Furthermore, large numbers of eosinophils were present in the inflamed brains of IFN-γ-deficient mice but not in those of wild-type mice, presumably because of increased intracerebral synthesis of interleukin-13 and the chemokines CCL1 and CCL11, which can attract eosinophils. These results demonstrate that IFN-γ plays a central role in host resistance against infection of the central nervous system with BDV and in clearance of BDV from neurons. They further indicate that IFN-γ may function as a neuroprotective factor that can limit the loss of neurons in the course of antiviral immune responses in the brain.


2007 ◽  
Vol 75 (11) ◽  
pp. 5338-5345 ◽  
Author(s):  
Kee-Jong Hong ◽  
Jason R. Wickstrum ◽  
Hung-Wen Yeh ◽  
Michael J. Parmely

ABSTRACT The production of gamma interferon (IFN-γ) is a key step in the protective innate immune response to Francisella tularensis. Natural killer cells and T cells in the liver are important sources of this cytokine during primary F. tularensis infections, and interleukin-12 (IL-12) appears to be an essential coactivating cytokine for hepatic IFN-γ expression. The present study was undertaken to determine whether or not macrophages (Mφ) or dendritic cells (DC) provide coactivating signals for the liver IFN-γ response in vitro, whether IL-12 mediates these effects, and whether Toll-like receptor (TLR) signaling is essential to induce this costimulatory activity. Both bone marrow-derived Mφ and DC significantly augmented the IFN-γ response of F. tularensis-challenged liver lymphocytes in vitro. While both cell types produced IL-12p40 in response to F. tularensis challenge, only DC secreted large quantities of IL-12p70. DC from both IL-12p35-deficient and TLR2-deficient mice failed to produce IL-12p70 and did not costimulate liver lymphocytes for IFN-γ production in response to viable F. tularensis organisms. Conversely, liver lymphocytes from TLR2-deficient mice cocultured with wild-type accessory cells produced IFN-γ at levels comparable to those for wild-type hepatic lymphocytes. These findings indicate that TLR2 controls hepatic lymphocyte IFN-γ responses to F. tularensis by regulating DC IL-12 production. While Mφ also coinduced hepatic IFN-γ production in response to F. tularensis, they did so in a fashion less dependent on TLR2.


2018 ◽  
Vol 86 (7) ◽  
pp. e00143-18 ◽  
Author(s):  
Taylor B. Poston ◽  
Catherine M. O'Connell ◽  
Jenna Girardi ◽  
Jeanne E. Sullivan ◽  
Uma M. Nagarajan ◽  
...  

ABSTRACTCD4 T cells and antibody are required for optimal acquired immunity toChlamydia muridarumgenital tract infection, and T cell-mediated gamma interferon (IFN-γ) production is necessary to clear infection in the absence of humoral immunity. However, the role of T cell-independent immune responses during primary infection remains unclear. We investigated this question by inoculating wild-type and immune-deficient mice withC. muridarumCM001, a clonal isolate capable of enhanced extragenital replication. Genital inoculation of wild-type mice resulted in transient dissemination to the lungs and spleen that then was rapidly cleared from these organs. However, CM001 genital infection proved lethal forSTAT1−/−andIFNG−/−mice, in which IFN-γ signaling was absent, and forRag1−/−mice, which lacked T and B cells and in which innate IFN-γ signaling was retained. In contrast, B cell-deficient muMT mice, which can generate a Th1 response, and T cell-deficient mice with intact B cell and innate IFN-γ signaling survived. These data collectively indicate that IFN-γ prevents lethal CM001 dissemination in the absence of T cells and suggests a B cell corequirement. Adoptive transfer of convalescent-phase immune serum but not naive IgM toRag1−/−mice infected with CM001 significantly increased the survival time, while transfer of naive B cells completely rescuedRag1−/−mice from CM001 lethality. Protection was associated with a significant reduction in the lung chlamydial burden of genitally infected mice. These data reveal an important cooperation between T cell-independent B cell responses and innate IFN-γ in chlamydial host defense and suggest that interactions between T cell-independent antibody and IFN-γ are essential for limiting extragenital dissemination.


2006 ◽  
Vol 74 (4) ◽  
pp. 2063-2071 ◽  
Author(s):  
Michael A. Pammit ◽  
Erin K. Raulie ◽  
Crystal M. Lauriano ◽  
Karl E. Klose ◽  
Bernard P. Arulanandam

ABSTRACT Francisella tularensis is an intracellular gram-negative bacterium that is the causative agent of tularemia and a potential bioweapon. We have characterized the efficacy of a defined F. novicida mutant (ΔiglC) as a live attenuated vaccine against subsequent intranasal challenge with the wild-type organism. Animals primed with the F. novicida ΔiglC (KKF24) mutant induced robust splenic gamma interferon (IFN-γ) and interleukin-12 (IL-12) recall responses with negligible IL-4 production as well as the production of antigen-specific serum immunoglobulin G1 (IgG1) and IgG2a antibodies. BALB/c mice vaccinated intranasally (i.n.) with KKF24 and subsequently challenged with wild-type F. novicida (100 and 1,000 50% lethal doses) were highly protected (83% and 50% survival, respectively) from the lethal challenges. The protection conferred by KKF24 vaccination was shown to be highly dependent on endogenous IFN-γ production and also was mediated by antibodies that could be adoptively transferred to naive B-cell-deficient mice by inoculation of immune sera. Collectively, the results demonstrate that i.n. vaccination with KKF24 induces a vigorous Th1-type cytokine and antibody response that is protective against subsequent i.n. challenge with the wild-type strain. This is the first report of a defined live attenuated strain providing protection against the inhalation of F. novicida.


2002 ◽  
Vol 76 (5) ◽  
pp. 2225-2232 ◽  
Author(s):  
Ingunn M. Stromnes ◽  
Ulf Dittmer ◽  
Ton N. M. Schumacher ◽  
Koen Schepers ◽  
Ronald J. Messer ◽  
...  

ABSTRACT The current studies demonstrate complex and seemingly contradictory effects by gamma interferon (IFN-γ) on Friend virus (FV) infection. Both temporal and tissue-specific effects were observed. During the first week of infection, IFN-γ-deficiency caused increased levels of FV infection in multiple tissues. Surprisingly, however, by 2 weeks postinfection, IFN-γ-deficient mice had significantly lower levels of infection in both the spleen and bone marrow compared to wild-type mice. The rapid reduction of virus in the IFN-γ-deficient mice correlated with a more rapid virus-neutralizing antibody response than was observed in the wild-type mice. Furthermore, the virus-neutralizing antibody response in wild-type mice could be accelerated by ablation of their IFN-γ response. Although the IFN-γ-deficient mice developed an accelerated virus-neutralizing antibody response, they did not class-switch to immunoglobulin G class immunoglobulins nor could they maintain long-term virus-neutralizing antibody titers. Eventually, all of the IFN-γ-deficient mice failed to keep persistent virus in check and developed fatal FV-induced erythroleukemia.


2002 ◽  
Vol 70 (9) ◽  
pp. 5304-5306 ◽  
Author(s):  
Michael L. Clawson ◽  
Natalia Paciorkowski ◽  
T. V. Rajan ◽  
Carson La Vake ◽  
Conny Pope ◽  
...  

ABSTRACT A new strain of Babesia microti (KR-1) was isolated from a Connecticut resident with babesiosis by hamster inoculation and adapted to C3H/HeJ and BALB/c mice. To examine the relative importance of humoral and cellular immunity for the control of B. microti infection, we compared the course of disease in wild-type BALB/c mice with that in BALB/c SCID mice, JHD-null (B-cell-deficient) mice, and T-cell receptor αβ (TCRβ−/−) or gamma interferon (IFN-γ) (IFN-γ−/−) knockout mice following inoculation with the KR-1-strain. SCID mice and TCRαβ knockouts sustained a severe but nonlethal parasitemia averaging 35 to 45% infected erythrocytes. IFN-γ-deficient mice developed a less severe parasitemia but were able to clear the infection. In contrast, in six of eight JHD-null mice, the levels of parasitemia were indistinguishable from those in the wild-type animals. These data indicate that cellular immunity is critical for the clearance of B. microti in BALB/c mice but that disease resolution can occur even in the absence of IFN-γ.


2001 ◽  
Vol 69 (12) ◽  
pp. 7445-7452 ◽  
Author(s):  
Anne Camille La Flamme ◽  
Elisabeth A. Patton ◽  
Edward J. Pearce

ABSTRACT In the absence of interleukin-4 (IL-4), infection withSchistosoma mansoni leads to a severe fatal disease rather than the chronic survivable condition that occurs in wild-type (WT) mice. Because the sustained production of NO most closely correlates to weight loss and fatality in infected IL-4−/− mice and because gamma interferon (IFN-γ) is an important inducer of inducible NO synthase, infected IL-4−/− mice were treated with anti-IFN-γ antibodies to determine the role of IFN-γ during schistosomiasis in WT and IL-4−/− animals. When IFN-γ was neutralized, Th2 responses were enhanced and NO production was reduced in both WT and IL-4−/− mice. The decreased NO production correlated with a rescue of proliferation in splenocytes from infected IL-4−/− mice. Furthermore, the neutralization of IFN-γ in vivo improved the gross appearance of the liver and led to a reduction in granuloma size in infected IL-4−/− but not WT mice. However, the neutralization of IFN-γ in vivo did not affect the development of severe disease in infected IL-4−/− mice. These results suggest that while the increased production of IFN-γ does lead to some of the pathology observed in infected IL-4−/− mice, it is not ultimately responsible for cachexia and death.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4253-4259 ◽  
Author(s):  
Elodie Belnoue ◽  
Michèle Kayibanda ◽  
Jean-Christophe Deschemin ◽  
Mireille Viguier ◽  
Matthias Mack ◽  
...  

Abstract Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor–5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)–chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.


2010 ◽  
Vol 78 (6) ◽  
pp. 2653-2666 ◽  
Author(s):  
Hideyuki Shiomi ◽  
Atsuhiro Masuda ◽  
Shin Nishiumi ◽  
Masayuki Nishida ◽  
Tetsuya Takagawa ◽  
...  

ABSTRACT Citrobacter rodentium, a murine model pathogen for enteropathogenic Escherichia coli, colonizes the surface of intestinal epithelial cells and causes mucosal inflammation. This bacterium is an ideal model for investigating pathogen-host immune interactions in the gut. It is well known that gene transcripts for Th1 cytokines are highly induced in colonic tissue from mice infected with C. rodentium. However, it remains to be seen whether the Th1 or Th2 cytokines produced by antigen-specific CD4+ T cells provide effective regulation of the host immune defense against C. rodentium infection. To investigate the antigen-specific immune responses, C. rodentium expressing ovalbumin (OVA-C. rodentium), a model antigen, was generated and used to define antigen-specific responses under gamma interferon (IFN-γ)-deficient or interleukin-4 (IL-4)-deficient conditions in vivo. The activation of antigen-specific CD4+ T cells and macrophage phagocytosis were evaluated in the presence of IFN-γ or IL-4 in vitro. IFN-γ-deficient mice exhibited a loss of body weight and a higher bacterial concentration in feces during OVA-C. rodentium infection than C57BL/6 (wild type) or IL-4-deficient mice. This occurred through the decreased efficiency of macrophage phagocytosis and the activation of antigen-specific CD4+ T cells. Furthermore, a deficiency in antigen-specific CD4+ T-cell-expressed IFN-γ led to a higher susceptibility to mucosal and gut-derived systemic OVA-C. rodentium infection. These results show that the IFN-γ produced by antigen-specific CD4+ T cells plays an important role in the defense against C. rodentium.


2004 ◽  
Vol 72 (8) ◽  
pp. 4432-4438 ◽  
Author(s):  
Xisheng Wang ◽  
Hoil Kang ◽  
Takane Kikuchi ◽  
Yasuhiro Suzuki

ABSTRACT We previously showed the requirement of both T cells and gamma interferon (IFN-γ)-producing non-T cells for the genetic resistance of BALB/c mice to the development of toxoplasmic encephalitis (TE). In order to define the role of IFN-γ production and the perforin-mediated cytotoxicity of T cells in this resistance, we obtained immune T cells from spleens of infected IFN-γ knockout (IFN-γ−/−), perforin knockout (PO), and wild-type BALB/c mice and transferred them into infected and sulfadiazine-treated athymic nude mice, which lack T cells but have IFN-γ-producing non-T cells. Control nude mice that had not received any T cells developed severe TE and died after discontinuation of sulfadiazine treatment due to the reactivation of infection. Animals that had received immune T cells from either wild-type or PO mice did not develop TE and survived. In contrast, nude mice that had received immune T cells from IFN-γ−/− mice developed severe TE and died as early as control nude mice. T cells obtained from the spleens of animals that had received either PO or wild-type T cells produced large amounts of IFN-γ after stimulation with Toxoplasma gondii antigens in vitro. In addition, the amounts of IFN-γ mRNA expressed in the brains of PO T-cell recipients did not differ from those in wild-type T-cell recipients. Furthermore, PO mice did not develop TE after infection, and their IFN-γ production was equivalent to or higher than that of wild-type animals. These results indicate that IFN-γ production, but not perforin-mediated cytotoxic activity, by T cells is required for the prevention of TE in genetically resistant BALB/c mice.


Sign in / Sign up

Export Citation Format

Share Document