scholarly journals Simultaneous Variation of the Immunodominant Outer Membrane Proteins, MSP2 and MSP3, during Anaplasma marginale Persistence In Vivo

2003 ◽  
Vol 71 (11) ◽  
pp. 6627-6632 ◽  
Author(s):  
Kelly A. Brayton ◽  
Patrick F. M. Meeus ◽  
Anthony F. Barbet ◽  
Guy H. Palmer

ABSTRACT Vector-borne bacterial pathogens persist in the mammalian host by varying surface antigens to evade the existing immune response. To test whether the model of surface coat switching and immune evasion can be extended to a vector-borne bacterial pathogen with multiple immunodominant surface proteins, we examined Anaplasma marginale, a rickettsia with two highly immunogenic outer membrane proteins, major surface protein 2 (MSP2) and MSP3. The simultaneous clearance of variants of the two most immunodominant surface proteins of A. marginale followed by emergence of unique variants indicates that the switch rates and immune selection for MSP2 and MSP3 are sufficiently similar to explain the cyclic bacteremia observed during infection in the immunocompetent host.

2006 ◽  
Vol 74 (6) ◽  
pp. 3471-3479 ◽  
Author(s):  
Susan M. Noh ◽  
Kelly A. Brayton ◽  
Donald P. Knowles ◽  
Joseph T. Agnes ◽  
Michael J. Dark ◽  
...  

ABSTRACT Bacterial pathogens in the genera Anaplasma and Ehrlichia encode a protein superfamily, pfam01617, which includes the predominant outer membrane proteins (OMPs) of each species, major surface protein 2 (MSP2) and MSP3 of Anaplasma marginale and Anaplasma ovis, Anaplasma phagocytophilum MSP2 (p44), Ehrlichia chaffeensis p28-OMP, Ehrlichia canis p30, and Ehrlichia ruminantium MAP1, and has been shown to be involved in both antigenic variation within the mammalian host and differential expression between the mammalian and arthropod hosts. Recently, complete sequencing of the A. marginale genome has identified an expanded set of genes, designated omp1-14, encoding new members of this superfamily. Transcriptional analysis indicated that, with the exception of the three smallest open reading frames, omp2, omp3, and omp6, these superfamily genes are transcribed in A. marginale-infected erythrocytes, tick midgut and salivary glands, and the IDE8 tick cell line. OMPs 1, 4, 7 to 9, and 11 were confirmed to be expressed as proteins by A. marginale within infected erythrocytes, with expression being either markedly lower (OMPs 1, 4, and 7 to 9) or absent (OMP11) in infected tick cells, which reflected regulation at the transcript level. Although the pfam01617 superfamily includes the antigenically variable MSP2 and MSP3 surface proteins, analysis of the omp1-14 sequences throughout a cycle of acute and persistent infection in the mammalian host and tick transmission reveals a high degree of conservation, an observation supported by sequence comparisons between the St. Maries strain and Florida strain genomes.


2008 ◽  
Vol 76 (5) ◽  
pp. 2219-2226 ◽  
Author(s):  
Susan M. Noh ◽  
Kelly A. Brayton ◽  
Wendy C. Brown ◽  
Junzo Norimine ◽  
Gerhard R. Munske ◽  
...  

ABSTRACT Surface proteins of tick-borne, intracellular bacterial pathogens mediate functions essential for invasion and colonization. Consequently, the surface proteome of these organisms is specifically relevant from two biological perspectives, induction of protective immunity in the mammalian host and understanding the transition from the mammalian host to the tick vector. In this study, the surface proteome of Anaplasma marginale, a tick-transmitted bacterial pathogen, was targeted by using surface-specific cross-linking to form intermolecular bonds between adjacent proteins. Liquid chromatography and tandem mass spectroscopy were then employed to characterize the specific protein composition of the resulting complexes. The surface complexes of A. marginale isolated from erythrocytes of the mammalian host were composed of multiple membrane proteins, most of which belong to a protein family, pfam01617, which is conserved among bacteria in the genus Anaplasma and the closely related genus Ehrlichia. In contrast, the surface proteome of A. marginale isolated from tick cells was much less complex and contained a novel protein, AM778, not identified within the surface proteome of organisms from the mammalian host. Immunization using the cross-linked surface complex induced protection against high-level bacteremia and anemia upon A. marginale challenge of cattle and effectively recapitulated the protection induced by immunization with whole outer membranes. These results indicate that a surface protein subset of the outer membrane is capable of inducing protective immunity and serves to direct vaccine development. Furthermore, the data support that remodeling of the surface proteome accompanies the transition between mammalian and arthropod hosts and identify novel targets for blocking transmission.


1991 ◽  
Vol 174 (5) ◽  
pp. 1167-1177 ◽  
Author(s):  
J Vuopio-Varkila ◽  
G K Schoolnik

Enteropathogenic Escherichia coli grow as discrete colonies on the mucous membranes of the small intestine. A similar pattern can be demonstrated in vitro; termed localized adherence (LA), it is characterized by the presence of circumscribed clusters of bacteria attached to the surfaces of cultured epithelial cells. The LA phenotype was studied using B171, an O111:NM enteropathogenic E. coli (EPEC) strain, and HEp-2 cell monolayers. LA could be detected 30-60 min after exposure of HEp-2 cells to B171. However, bacteria transferred from infected HEp-2 cells to fresh monolayers exhibited LA within 15 min, indicating that LA is an inducible phenotype. Induction of the LA phenotype was found to be associated with de novo protein synthesis and changes in the outer membrane proteins, including the production of a new 18.5-kD polypeptide. A partial NH2-terminal amino acid sequence of this polypeptide was obtained and showed it to be identical through residue 12 to the recently described bundle-forming pilus subunit of EPEC. Expression of the 18.5-kD polypeptide required the 57-megadalton enteropathogenic E. coli adherence plasmid previously shown to be required for the LA phenotype in vitro and full virulence in vivo. This observation, the correspondence of the 18.5-kD polypeptide to an EPEC-specific pilus protein, and the temporal correlation of its expression with the development of the LA phenotype suggest that it may contribute to the EPEC colonial mode of growth.


1991 ◽  
Vol 11 (5) ◽  
pp. 373-378 ◽  
Author(s):  
Douglas W. Morck ◽  
Brian D. Ellis ◽  
P.A.Gilbert Domingue ◽  
Merle E. Olson ◽  
J.William Costerton

2011 ◽  
Vol 63 (2) ◽  
pp. 174-182 ◽  
Author(s):  
Bruno D'Alessandro ◽  
Leticia M. S. Lery ◽  
Wanda M. A. Krüger ◽  
Analía Lima ◽  
Claudia Piccini ◽  
...  

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Marcin Grabowicz ◽  
Daria Koren ◽  
Thomas J. Silhavy

ABSTRACT The promoter most strongly induced upon activation of the Cpx two-component envelope stress response is the cpxP promoter. The 3′ untranscribed region (UTR) of the cpxP transcript is shown to produce a small RNA (sRNA), CpxQ. We investigated the role of CpxQ in combating envelope stress. Remarkably, the two effectors specified by the transcript are deployed to combat distinct stresses in different cellular compartments. CpxP acts in both a regulatory negative-feedback loop and as an effector that combats periplasmic protein misfolding. We find that CpxQ combats toxicity at the inner membrane (IM) by downregulating the synthesis of the periplasmic chaperone Skp. Our data indicate that this regulation prevents Skp from inserting β-barrel outer membrane proteins (OMPs) into the IM, a lethal event that likely collapses the proton motive force. Our findings suggest that Skp can fold and directly insert OMPs into a lipid bilayer in vivo without the aid of the Bam complex. IMPORTANCE Skp is a well-characterized periplasmic chaperone that binds unfolded OMPs. Surprisingly, we find that Skp can catalyze the folding and mistargeting of OMPs into the inner membrane without the aid of the other cellular proteins that normally assemble OMPs. Several OMPs function as diffusion pores. Accordingly, their mistargeting is lethal because it depolarizes the inner membrane. We show that the most highly expressed transcript of the Cpx stress response produces an sRNA from the 3′ UTR, CpxQ, which combats this potential toxicity by downregulating Skp production. Defects in OMP assembly trigger the σ E response to upregulate factors, including Skp, that promote OMP folding. The Cpx response downregulates σ E . Our findings reveal that this heretofore puzzling hierarchy exists to protect the inner membrane.


2001 ◽  
Vol 2 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Darren J. Trott ◽  
David P. Alt ◽  
Richard L. Zuerner ◽  
Michael J. Wannemuehler ◽  
Thaddeus B. Stanton

AbstractLittle is known about the outer membrane structure ofBrachyspira hyodysenteriae and Brachyspira pilosicolior the role of outer membrane proteins (OMPs) in host colonization and the development of disease. The isolation of outer membrane vesicles fromB. hyodysenteriaehas confirmed that cholesterol is a significant outer membrane constituent and that it may impart unique characteristics to the lipid bilayer structure, including a reduced density. Unique proteins that have been identified in theB. hyodysenteriaeouter membrane include the variable surface proteins (Vsp) and lipoproteins such as SmpA and BmpB. While the function of these proteins remains to be determined, there is indirect evidence to suggest that they may be involved in immune evasion. These data may explain the ability of the organism to initiate chronic infection. OMPs may be responsible for the unique attachment ofB. pilosicolito colonic epithelial cells; however, the onlyB. pilosicoliOMPs that have been identified to date are involved in metabolism. In order to identify furtherB. pilosicoliOMPs we have isolated membrane vesicle fractions from porcine strain 95–1000 by osmotic lysis and isopycnic centrifugation. The fractions were free of contamination by cytoplasm and fla-gella and contained outer membrane. Inner membrane contamination was minimal but could not be completely excluded. An abundant 45-kDa, heat-modifiable protein was shown to have significant homology withB. hyodysenteriaeVsp, and monoclonal antibodies were produced that reacted with fiveB. pilosicoli-specificmembrane protein epitopes. The first of these proteins to be characterized is a unique surface-exposed lipoprotein.


2007 ◽  
Vol 56 (12) ◽  
pp. 1600-1607 ◽  
Author(s):  
Analía Lima ◽  
Pablo Zunino ◽  
Bruno D'Alessandro ◽  
Claudia Piccini

Proteus mirabilis, a common cause of urinary tract infections, expresses iron-regulated outer-membrane proteins (OMPs) in response to iron restriction. It has been suggested that a 64 kDa OMP is involved in haemoprotein uptake and that this might have a role in pathogenesis. In order to confirm this hypothesis, this study generated a P. mirabilis mutant strain (P7) that did not express the 64 kDa OMP, by insertion of the TnphoA transposon. The nucleotide sequence of the interrupted gene revealed that it corresponded to a haemin receptor precursor. Moreover, in vitro growth assays showed that the mutant was unable to grow using haemoglobin and haemin as unique iron sources. The authors also carried out in vivo growth and infectivity assays and demonstrated that P7 was not able to survive in an in vivo model and was less efficient than wild-type strain Pr 6515 in colonizing the urinary tract. These results confirmed that the P. mirabilis 64 kDa iron-regulated OMP is a haem receptor that has an important role for survival and multiplication of these bacteria in the mammalian host and in the development of urinary tract infection.


Sign in / Sign up

Export Citation Format

Share Document