scholarly journals Relative Importance of Heat-Labile Enterotoxin in the Causation of Severe Diarrheal Disease in the Gnotobiotic Piglet Model by a Strain of Enterotoxigenic Escherichia coli That Produces Multiple Enterotoxins

2004 ◽  
Vol 72 (7) ◽  
pp. 3914-3924 ◽  
Author(s):  
Emil M. Berberov ◽  
You Zhou ◽  
David H. Francis ◽  
Michael A. Scott ◽  
Stephen D. Kachman ◽  
...  

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strains that produce multiple enterotoxins are important causes of severe dehydrating diarrhea in human beings and animals, but the relative importance of these enterotoxins in the pathogenesis is poorly understood. Gnotobiotic piglets were used to study the importance of heat-labile enterotoxin (LT) in infection with an ETEC strain that produces multiple enterotoxins. LT− (ΔeltAB) and complemented mutants of an F4+ LT+ STb+ EAST1+ ETEC strain were constructed, and the virulence of these strains was compared in gnotobiotic piglets expressing receptors for F4+ fimbria. Sixty percent of the piglets inoculated with the LT− mutant developed severe dehydrating diarrhea and septicemia compared to 100% of those inoculated with the nalidixic acid-resistant (Nalr) parent and 100% of those inoculated with the complemented mutant strain. Compared to piglets inoculated with the Nalr parent, the mean rate of weight loss (percent per hour) of those inoculated with the LT− mutant was 67% lower (P < 0.05) and that of those inoculated with the complemented strain was 36% higher (P < 0.001). Similarly, piglets inoculated with the LT− mutant had significant reductions in the mean bacterial colony count (CFU per gram) in the ileum; bacterial colonization scores (square millimeters) in the jejunum and ileum; and clinical pathology parameters of dehydration, electrolyte imbalance, and metabolic acidosis (P < 0.05). These results indicate the significance of LT to the development of severe dehydrating diarrhea and postdiarrheal septicemia in ETEC infections of swine and demonstrate that EAST1, LT, and STb may be concurrently expressed by porcine ETEC strains.

2011 ◽  
Vol 18 (10) ◽  
pp. 1593-1599 ◽  
Author(s):  
Xiaosai Ruan ◽  
Mei Liu ◽  
Thomas A. Casey ◽  
Weiping Zhang

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT192) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT192A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT192A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT192A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrialE. colistrains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea.


2008 ◽  
Vol 76 (7) ◽  
pp. 3141-3149 ◽  
Author(s):  
Joseph Erume ◽  
Emil M. Berberov ◽  
Stephen D. Kachman ◽  
Michael A. Scott ◽  
You Zhou ◽  
...  

ABSTRACT In swine, the most common and severe enterotoxigenic Escherichia coli (ETEC) infections are caused by strains that express K88 (F4)+ fimbriae, heat-labile enterotoxin (LT), heat-stable enterotoxin b (STb), and enteroaggregative E. coli heat-stable toxin 1. Previous studies based on a design that involved enterotoxin genes cloned into a nontoxigenic fimbriated strain have suggested that LT but not STb plays an important role in dehydrating diarrheal disease in piglets <1 week old and also enhances bacterial colonization of the intestine. In the present study, we compared these two toxins in terms of importance for piglets >1 week old with a study design that involved construction of isogenic single- and double-deletion mutants and inoculation of 9-day-old F4ac receptor-positive gnotobiotic piglets. Based on the postinoculation percent weight change per h and serum bicarbonate concentrations, the virulence of the STb− mutant (ΔestB) did not significantly differ from that of the parent. However, deletion of the LT genes (ΔeltAB) in the STb− mutant resulted in a complete abrogation of weight loss, dehydration, and metabolic acidosis in inoculated pigs, and LT complementation restored the virulence of this strain. These results support the hypothesis that LT is a more significant contributor than STb to the virulence of F4+ ETEC infections in young F4ac receptor-positive pigs less than 2 weeks old. However, in contrast to previous studies with gnotobiotic piglets, there was no evidence that the expression of LT enhanced the ability of the F4+ ETEC strain to colonize the small intestine.


1998 ◽  
Vol 61 (2) ◽  
pp. 141-145 ◽  
Author(s):  
HAU-YANG TSEN ◽  
LIANG-ZHAO JIAN ◽  
WAN-RONG CHI

Enterotoxigenic Escherichia coli (ETEC) strains which produce heat labile and/or heat stable toxins (LT and ST) may cause diarrhea in humans and farm animals. Using PCR primers specific for the LT I and ST II genes, a multiplex PCR system which allows detection of LT I- and ST II-producing ETEC strains was developed. When skim milk was used for a PCR assay, it was found that if target cells in the sample were precultured in MacConkey broth for 8 h prior to PCR as few as 100 cells per ml of the sample could be detected. Without the preculture step, 104 CFU of target cells per 0.2 g of porcine stool specimen were required to generate visible PCR products. The multiplex PCR System can be used for rapid testing of fecal specimens, food and possibly environmental samples for the presence of ETEC strains.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 286
Author(s):  
Jose Matías ◽  
Yadira Pastor ◽  
Juan M. Irache ◽  
Carlos Gamazo

Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of illness and death in mammals, including neonatal, recently weaned pigs and infant human beings. We have previously shown that outer membrane vesicles (OMV) obtained from ETEC serotypes encapsulated into zein nanoparticles, coated with a Gantrez-mannosamine polymer conjugate (OMV-NP), were immunogenic in mice and sows. In the present study, we show that pups from vaccinated mice were protected against ETEC F4 serotype challenge through maternal passive immunization. OMV from F4 cultures were collected and characterized. Two-week-pregnant BALB/c mice were orally immunized with a single dose of vesicles (0.2 mg) either free (OMV) or encapsulated into nanoparticles (OMV-NP). Evaluation of the antibodies in serum (IgG1, Ig2a or IgA) and feces (IgA) of dams immunized with OMV-NP revealed an enhancement of specific immunogenicity. The antibody response conferred by the nanoparticle adjuvant was also correlated with IL-6 and IL-10 splenic levels. Each mother was allowed to feed her progeny for one week. Suckling pups presented specific IgA in feces demonstrating their passive immunization through colostrum intake. Two weeks after the pups were born, they were infected orally with a single dose of F4 E. coli (1.2 × 108 CFU/pup). Results showed that 70% of the pups from dams immunized with OMV-NP were protected. In contrast, 80% of the pups from dams immunized with free OMV died as a result of the experimental challenge. These findings support the use of zein nanoparticles coated with a Gantrez-mannosamine shield as adjuvant delivery system for the oral immunization during pregnancy to confer immunity to the offspring through maternal immunization


2013 ◽  
Vol 305 (11) ◽  
pp. C1185-C1191 ◽  
Author(s):  
Abhisek Ghosal ◽  
Nabendu S. Chatterjee ◽  
Tristan Chou ◽  
Hamid M. Said

Infections with enteric pathogens like enterotoxigenic Escherichia coli ( ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and -secreted ETEC component and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of human thiamin transporter-1 and -2 (hTHTR1 and hTHTR2) at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E. coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin and is associated with a decrease in the expression of intestinal thiamin transporters.


Sign in / Sign up

Export Citation Format

Share Document