scholarly journals Enterotoxigenic Escherichia coli infection and intestinal thiamin uptake: studies with intestinal epithelial Caco-2 monolayers

2013 ◽  
Vol 305 (11) ◽  
pp. C1185-C1191 ◽  
Author(s):  
Abhisek Ghosal ◽  
Nabendu S. Chatterjee ◽  
Tristan Chou ◽  
Hamid M. Said

Infections with enteric pathogens like enterotoxigenic Escherichia coli ( ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and -secreted ETEC component and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of human thiamin transporter-1 and -2 (hTHTR1 and hTHTR2) at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E. coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin and is associated with a decrease in the expression of intestinal thiamin transporters.

2019 ◽  
Vol 316 (1) ◽  
pp. G55-G63 ◽  
Author(s):  
Ganapathy A. Subramenium ◽  
Subrata Sabui ◽  
Jonathan S. Marchant ◽  
Hamid M. Said ◽  
Veedamali S. Subramanian

Vitamin C is an antioxidant and acts as a cofactor for many enzymatic reactions. Humans obtain vitamin C from dietary sources via intestinal absorption, a process that involves the sodium-dependent vitamin C transporters-1 and -2 (SVCT1 and SVCT2). Enterotoxigenic Escherichia coli (ETEC) infection impacts intestinal absorption/secretory functions, but nothing is known about its effect on ascorbic acid (AA) uptake. Here we demonstrate that infection of Caco-2 cells with ETEC led to a significant inhibition in intestinal AA uptake. This inhibition was associated with a marked reduction in hSVCT1 and hSVCT2 protein, mRNA, and heterogeneous nuclear RNA (hnRNA) expression levels as well as significant inhibition in the activity of both the SLC23A1 and SLC23A2 promoters. Similarly, exposure of mice to ETEC led to a significant inhibition in intestinal AA uptake and reduction in mSVCT1 and mSVCT2 protein, mRNA, and hnRNA expression levels. Inhibition was caused by the action of heat labile enterotoxin (LT), since infecting Caco-2 cells with LT-deficient ETEC (ΔLT) failed to impact AA uptake. Because LT activates adenylate cyclase, we also examined the effect of dibutyryl-cAMP in AA uptake by Caco-2 cells and observed a significant inhibition. Furthermore, treating the cells with celastrol, a specific NF-κB inhibitor, significantly blocked the inhibition of AA uptake caused by ETEC infection. Together, these data demonstrate that ETEC infection impairs intestinal AA uptake through a cAMP-dependent NF-κB-mediated pathway that regulates both SLC23A1 and SLC23A2 transcription.NEW & NOTEWORTHY Our findings demonstrate that heat-labile enterotoxin produced by enterotoxigenic Escherichia coli inhibits AA uptake in intestinal epithelial cells and mouse intestine. This effect is mediated through transcriptional repression of SLC23A1 (SVCT1) and SLC23A2 (SVCT2) via a cAMP-dependent NF-κB signaling pathway.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pengpeng Xia ◽  
Yunping Wu ◽  
Siqi Lian ◽  
Guomei Quan ◽  
Yiting Wang ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC) F4ac is a major constraint to the development of the pig industry, which is causing newborn and post-weaning piglets diarrhea. Previous studies proved that FaeG is the major fimbrial subunit of F4ac E. coli and efficient for bacterial adherence and receptor recognition. Here we show that the faeG deletion attenuates both the clinical symptoms of F4ac infection and the F4ac-induced intestinal mucosal damage in piglets. Antibody microarray analysis and the detection of mRNA expression using porcine neonatal jejunal IPEC-J2 cells also determined that the absence of FaeG subunit alleviated the F4ac promoted apoptosis in the intestinal epithelial cells. Thus, targeted depletion of FaeG is still beneficial for the prevention or treatment of F4ac infection.


2006 ◽  
Vol 69 (2) ◽  
pp. 412-416 ◽  
Author(s):  
MICHAEL A. GRANT ◽  
JINXIN HU ◽  
KAREN C. JINNEMAN

A multiplex real-time PCR method was developed for detection of heat-labile and heat-stable toxin genes in enterotoxigenic Escherichia coli. Approximately 10 CFU per reaction mixture could be detected in rinsates from produce samples. Several foods representative of varieties previously shown to have caused enterotoxigenic E. coli outbreaks were spiked and enriched for 4 or 6 h. Both heat-labile and heat-stable toxin genes could be detected in the foods tested, with the exception of hot sauce, with threshold cycle values ranging from 25.2 to 41.1. A procedure using membrane filtration which would allow enumeration of the enterotoxigenic E. coli population in a food sample in less than 28 h by real-time PCR analysis of colonies picked from media highly selective for E. coli was also developed.


1979 ◽  
Vol 9 (4) ◽  
pp. 493-497
Author(s):  
M H Merson ◽  
R B Sack ◽  
A K Kibriya ◽  
A Al-Mahmood ◽  
Q S Adamed ◽  
...  

Diagnosis of enterotoxigenic Escherichia coli diarrhea was made in 109 adult males with an acute dehydrating cholera-like syndrome in Dacca, Bangladesh, by testing 10 colonies isolated from admission stool specimens for production of heat-labile and heat-stable toxins. Toxin testing of one colony yielded a diagnosis in 92% of the cases, testing of two colonies yielded a diagnosis in 95% of the cases, testing of a pool of 5 colonies yielded a diagnosis in 95% of the cases, and testing of a pool of 10 colonies yielded a diagnosis in 96% of the cases. From stool cultures obtained on subsequent days, toxin testing of individual colonies and pools revealed diminished efficacy of pooling with decreasing numbers of enterotoxin-positive isolates in the pool. To detect the presence of enterotoxigenic E. coli in stools, toxin testing of 5 individual isolates and a pool of 10 colonies was found to be almost as effective as the testing of 10 individual isolates.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaoxi Liu ◽  
Fenghua Liu ◽  
Yunfei Ma ◽  
Huanrong Li ◽  
Xianghong Ju ◽  
...  

Puerarin, baicalin and berberine hydrochloride are the main components of Gegen Qinlian Decoction, which has been used to treat diarrhoea in China for hundreds of years, yet the biological function and molecular mechanism of these components are not clear. To investigate the effects of puerarin, baicalin, and berberine hydrochloride on the regulation of porcine intestinal epithelial cells (IPEC-J2 cells) infected with enterotoxigenic Escherichia coli (ETEC). IPEC-J2 cells were pretreated with puerarin (200 μg/mL), baicalin (1 μg/mL), and berberine hydrochloride (100 μg/mL) at 37°C for 3 h and then coincubated with the F4ac ETEC bacterial strain 200 at 37°C for 3 h. ETEC infection damaged the structure of IPEC-J2 cells, upregulated mucin 4 (P < 0.01) and mucin 13 mRNA (P < 0.05) expression, increased the apoptosis rate (P < 0.05), and promoted inflammatory responses (IL-6 and CXCL-2 mRNA expression) in IPEC-J2 cells by activating the nuclear factor-κB (NF-κB) signaling pathway. Pretreatment with puerarin, baicalin, and berberine hydrochloride improved the structure and morphology of IPEC-J2 cells and inhibited ETEC adhesion by downregulating specific adhesion molecules. Pretreatment with baicalin decreased the inflammatory response; pretreatment with baicalin and berberine hydrochloride decreased the inflammatory response mediated by the NF-κB signaling pathway. Pretreatment with puerarin, baicalin, and berberine hydrochloride protected IPEC-J2 cells from ETEC infection by inhibiting bacterial adhesion and inflammatory responses.


2013 ◽  
Vol 82 (2) ◽  
pp. 509-521 ◽  
Author(s):  
Qingwei Luo ◽  
Pardeep Kumar ◽  
Tim J. Vickers ◽  
Alaullah Sheikh ◽  
Warren G. Lewis ◽  
...  

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is a leading cause of death due to diarrheal illness among young children in developing countries, and there is currently no effective vaccine. Many elements of ETEC pathogenesis are still poorly defined. Here we demonstrate that YghJ, a secreted ETEC antigen identified in immunoproteomic studies using convalescent patient sera, is required for efficient access to small intestinal enterocytes and for the optimal delivery of heat-labile toxin (LT). Furthermore, YghJ is a highly conserved metalloprotease that influences intestinal colonization of ETEC by degrading the major mucins in the small intestine, MUC2 and MUC3. Genes encoding YghJ and its cognate type II secretion system (T2SS), which also secretes LT, are highly conserved in ETEC and exist in other enteric pathogens, including other diarrheagenicE. coliandVibrio choleraebacteria, suggesting that this mucin-degrading enzyme may represent a shared virulence feature of these important pathogens.


2000 ◽  
Vol 68 (5) ◽  
pp. 2766-2774 ◽  
Author(s):  
James M. Fleckenstein ◽  
Luther E. Lindler ◽  
Eric A. Elsinghorst ◽  
James B. Dale

ABSTRACT Studies of the pathogenesis of enterotoxigenic Escherichia coli (ETEC) have largely centered on extrachromosomal determinants of virulence, in particular the plasmid-encoded heat-labile (LT) and heat-stable enterotoxins and the colonization factor antigens. ETEC causes illnesses that range from mild diarrhea to severe cholera-like disease. These differences in disease severity are not readily accounted for by our current understanding of ETEC pathogenesis. Here we demonstrate that Tia, a putative adhesin of ETECH10407 , is encoded on a large chromosomal element of approximately 46 kb that shares multiple features with previously described E. coli pathogenicity islands. Further analysis of the region downstream from tia revealed the presence of several candidate open reading frames (ORFs) in the same transcriptional orientation as tia. The putative proteins encoded by these ORFs bear multiple motifs associated with bacterial secretion apparatuses. An in-frame deletion in one candidate gene identified here as leoA (labile enterotoxin output) resulted in marked diminution of secretion of the LT enterotoxin and lack of fluid accumulation in a rabbit ileal loop model of infection. Although previous studies have suggested that E. coli lacks the capacity to secrete LT, our studies show that maximal release of LT from the periplasm of H10407 is dependent on one or more elements encoded on a pathogenicity island.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Matthias Dierick ◽  
Hans Van der Weken ◽  
Joanna Rybarczyk ◽  
Daisy Vanrompay ◽  
Bert Devriendt ◽  
...  

ABSTRACT Postweaning diarrhea (PWD) is an economically important, multifactorial disease affecting pigs within the first 2 weeks after weaning. The most common agent associated with PWD is enterotoxigenic Escherichia coli (ETEC). Currently, antibiotics are used to control PWD, and this has most likely contributed to an increased prevalence of antibiotic-resistant strains. This puts pressure on veterinarians and farmers to decrease or even abandon the use of antibiotics, but these measures need to be supported by alternative strategies for controlling these infections. Naturally derived molecules, such as lactoferrin, could be potential candidates due to their antibacterial or immune-modulating activities. Here, we analyzed the ability of bovine lactoferrin (bLF), porcine lactoferrin (pLF), and ovotransferrin (ovoTF) to inhibit ETEC growth, degrade ETEC virulence factors, and inhibit adherence of these pathogens to porcine intestinal epithelial cells. Our results revealed that bLF and pLF, but not ovoTF, inhibit the growth of ETEC. Furthermore, bLF and pLF can degrade several virulence factors produced by ETEC strains, more specifically F4 fimbriae, F18 fimbriae, and flagellin. On the other hand, ovoTF degrades F18 fimbriae and flagellin but not F4 fimbriae. An in vitro adhesion assay showed that bLF, ovoTF, and pLF can decrease the number of bacteria adherent to epithelial cells. Our findings demonstrate that lactoferrin can directly affect porcine ETEC strains, which could allow lactoferrin to serve as an alternative to antimicrobials for the prevention of ETEC infections in piglets. IMPORTANCE Currently, postweaning F4+ and F18+ Escherichia coli infections in piglets are controlled by the use of antibiotics and zinc oxide, but the use of these antimicrobial agents most likely contributes to an increase in antibiotic resistance. Our work demonstrates that bovine and porcine lactoferrin can inhibit the growth of porcine enterotoxigenic E. coli strains. In addition, we also show that lactoferrin can reduce the adherence of these strains to small intestinal epithelial cells, even at a concentration that does not inhibit bacterial growth. This research could allow us to develop lactoferrin as an alternative strategy to prevent enterotoxigenic E. coli (ETEC) infections in piglets.


2008 ◽  
Vol 77 (1) ◽  
pp. 341-347 ◽  
Author(s):  
Amber M. Johnson ◽  
Radhey S. Kaushik ◽  
Nicholas J. Rotella ◽  
Philip R. Hardwidge

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is a common cause of travelers' and postweaning diarrhea in humans and swine, respectively. The extent to which ETEC damages host cells is unclear. Experiments are presented that probe the ability of porcine ETEC isolates to induce apoptosis and cell death in porcine intestinal epithelial cells. Quantification of host phosphatidylserine exposure following ETEC infection suggested that ETEC induced changes in plasma membrane asymmetry, independent of the expression of the heat-labile enterotoxin. Significant host cell death was not observed. ETEC infection also caused a drastic inhibition of host esterase activity, as measured by calcein fluorescence. While ETEC infection resulted in activation of host caspase 3, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling of DNA double-strand breakage, indicative of late stages of apoptosis, was not observed. Camptothecin-induced apoptosis markedly increased subsequent ETEC adherence. Transfer of cell-free supernatants from apoptotic cells to bacterial inocula prior to infection of naïve cells increased the transcriptional activity of the regulatory region upstream of the K88ac operon and promoted subsequent adherence to host cells.


Sign in / Sign up

Export Citation Format

Share Document