scholarly journals Transcriptional Responses of Intestinal Epithelial Cells to Infection with Vibrio cholerae

2004 ◽  
Vol 72 (7) ◽  
pp. 4240-4248 ◽  
Author(s):  
Neil R. Stokes ◽  
Xin Zhou ◽  
Stephen J. Meltzer ◽  
James B. Kaper

ABSTRACT Vibrio cholerae is a noninvasive enteric bacterium that causes the severe diarrheal disease cholera. Candidate cholera vaccines have been engineered by deleting genes encoding known virulence factors in V. cholerae; however, many of these attenuated strains were still reactogenic in human volunteers. In this study, DNA arrays were utilized to monitor the transcriptional responses of human intestinal epithelial cells (T84) to eight strains of V. cholerae, including attenuated, toxigenic, and environmental isolates. cDNA probes generated from host RNA samples were hybridized against low- and high-density gene arrays. V. cholerae induced the transcription of a variety of host genes and repressed the expression of a lower number of genes. Expression patterns were confirmed for certain genes by reverse transcriptase PCR and enzyme-linked immunosorbent assays. A core subset of genes was found to be differentially regulated in all experiments. These genes included genes involved in innate mucosal immunity, intracellular signaling, and cellular proliferation. Reactogenic vaccine strains induced greater expression of genes for certain proinflammatory cytokines than nonreactogenic strains. Wild-type and attenuated derivatives induced and repressed many genes in common, although there were differences in the transcription profiles. These results indicate that the types of host genes modulated by attenuated V. cholerae, and the extent of their induction, may mediate the symptoms seen with reactogenic cholera vaccine strains.

2006 ◽  
Vol 74 (1) ◽  
pp. 769-772 ◽  
Author(s):  
Scarlett Goon ◽  
Cheryl P. Ewing ◽  
Maria Lorenzo ◽  
Dawn Pattarini ◽  
Gary Majam ◽  
...  

ABSTRACT A Campylobacter jejuni 81-176 mutant in Cj0977 was fully motile but reduced >3 logs compared to the parent in invasion of intestinal epithelial cells in vitro. The mutant was also attenuated in a ferret diarrheal disease model. Expression of Cj0977 protein was dependent on a minimal flagella structure.


Oncogene ◽  
2005 ◽  
Vol 24 (19) ◽  
pp. 3141-3153 ◽  
Author(s):  
Yasuyoshi Naishiro ◽  
Tesshi Yamada ◽  
Masashi Idogawa ◽  
Kazufumi Honda ◽  
Mizuho Takada ◽  
...  

2019 ◽  
Vol 317 (6) ◽  
pp. C1205-C1212 ◽  
Author(s):  
Anoop Kumar ◽  
Dulari Jayawardena ◽  
Arivarasu N. Anbazhagan ◽  
Ishita Chatterjee ◽  
Shubha Priyamvada ◽  
...  

The protozoan parasite Cryptosporidium parvum (CP) causes cryptosporidiosis, a diarrheal disease worldwide. Infection in immunocompetent hosts typically results in acute, self-limiting, or recurrent diarrhea. However, in immunocompromised individuals infection can cause fulminant diarrhea, extraintestinal manifestations, and death. To date, the mechanisms underlying CP-induced diarrheal pathogenesis are poorly understood. Diarrheal diseases most commonly involve increased secretion and/or decreased absorption of fluid and electrolytes. We and others have previously shown impaired chloride absorption in infectious diarrhea due to dysregulation of SLC26A3 [downregulated in adenoma (DRA)], the human intestinal apical membrane Cl−/[Formula: see text] exchanger protein. However, there are no studies on the effects of CP infection on DRA activity. Therefore, we examined the expression and function of DRA in intestinal epithelial cells in response to CP infection in vitro and in vivo. CP infection (0.5 × 106 oocysts/well in 24-well plates, 24 h) of Caco-2 cell monolayers significantly decreased Cl−/[Formula: see text] exchange activity (measured as DIDS-sensitive 125I uptake) as well as DRA mRNA and protein levels. Substantial downregulation of DRA mRNA and protein was also observed following CP infection ex vivo in mouse enteroid-derived monolayers and in vivo in the ileal and jejunal mucosa of C57BL/6 mice for 24 h. However, at 48 h after infection in vivo, the effects on DRA mRNA and protein were attenuated and at 5 days after infection DRA returned to normal levels. Our results suggest that impaired chloride absorption due to downregulation of DRA could be one of the contributing factors to CP-induced acute, self-limiting diarrhea in immunocompetent hosts.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Myra Hosmillo ◽  
Yasmin Chaudhry ◽  
Komal Nayak ◽  
Frederic Sorgeloos ◽  
Bon-Kyoung Koo ◽  
...  

ABSTRACT Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system. IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.


2014 ◽  
Vol 82 (12) ◽  
pp. 5308-5316 ◽  
Author(s):  
Lisa T. Read ◽  
Rachel W. Hahn ◽  
Carli C. Thompson ◽  
David L. Bauer ◽  
Elizabeth B. Norton ◽  
...  

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is a significant cause of diarrheal disease and death, especially in children in developing countries. ETEC causes disease by colonizing the small intestine and producing heat-labile toxin (LT), heat-stable toxin (ST), or both LT and ST (LT+ST). The majority of ETEC strains produce both ST and LT. Despite the prevalence of LT+ST-producing organisms, few studies have examined the physiologic or immunologic consequences of simultaneous exposure to these two potent enterotoxins. In the current report, we demonstrate that when LT and ST are both present, they increase water movement into the intestinal lumen over and above the levels observed with either toxin alone. As expected, cultured intestinal epithelial cells increased their expression of intracellular cyclic GMP (cGMP) when treated with ST and their expression of intracellular cyclic AMP (cAMP) when treated with LT. When both toxins were present, cGMP levels but not cAMP levels were synergistically elevated compared with the levels of expression caused by the corresponding single-toxin treatment. Our data also demonstrate that the levels of inflammatory cytokines produced by intestinal epithelial cells in response to LT are significantly reduced in animals exposed to both enterotoxins. These findings suggest that there may be complex differences between the epithelial cell intoxication and, potentially, secretory outcomes induced by ETEC strains expressing LT+ST compared with strains that express LT or ST only. Our results also reveal a novel mechanism wherein ST production may reduce the hosts' ability to mount an effective innate or adaptive immune response to infecting organisms.


Sign in / Sign up

Export Citation Format

Share Document