scholarly journals Gamma Interferon and Monophosphoryl Lipid A-Trehalose Dicorynomycolate Are Efficient Adjuvants for Mycobacterium tuberculosis Multivalent Acellular Vaccine

2005 ◽  
Vol 73 (1) ◽  
pp. 250-257 ◽  
Author(s):  
Avi-Hai Hovav ◽  
Yolanta Fishman ◽  
Herve Bercovier

ABSTRACT In this study, we examined the immunogenicity and protective efficacy of six immunodominant Mycobacterium tuberculosis recombinant antigens (85B, 38kDa, ESAT-6, CFP21, Mtb8.4, and 16kDa) in a multivalent vaccine preparation (6Ag). Gamma interferon (IFN-γ) and monophosphoryl lipid A-trehalose dicorynomycolate (Ribi) adjuvant systems were used separately or in combination for immunization with the recombinant antigens. Our results demonstrate that immunization of mice with Ribi emulsified antigens in the presence of IFN-γ (Ribi+6Ag+IFN-γ) resulted after challenge with a virulent M. tuberculosis strain in a significant reduction in the CFU counts that was comparable to that achieved with the BCG vaccine (∼0.9-log protection). Antigen-specific immunoglobulin G (IgG) titers in the Ribi+6Ag+IFN-γ-immunized mice were lower than in mice immunized with Ribi+6Ag and were oriented toward a Th1-type response, as confirmed by elevated IgG2a levels. In addition, splenocyte proliferation, IFN-γ secretion, and NO production were significantly higher in splenocytes derived from Ribi+6Ag+IFN-γ-immunized mice, whereas IL-10 secretion was decreased. These findings confirm the induction of a strong cellular immunity in the vaccinated mice that correlates well with their enhanced resistance to M. tuberculosis. The adjuvant effect of IFN-γ was dose dependent. A dose of 5 μg of IFN-γ per mouse per immunization gave optimal protection, whereas lower or higher amounts (0.5 or 50 μg/ mouse) of IFN-γ failed to enhance protection.

2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Katharina Richard ◽  
Barbara J. Mann ◽  
Aiping Qin ◽  
Eileen M. Barry ◽  
Robert K. Ernst ◽  
...  

ABSTRACT Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo. Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.


2020 ◽  
Author(s):  
Diana H. Quan ◽  
Claudio Counoupas ◽  
Gayathri Nagalingam ◽  
Rachel Pinto ◽  
Nikolai Petrovsky ◽  
...  

AbstractThe development of safe and effective adjuvants is a critical goal of vaccine development programs. In this report, we defined the immunostimulatory profile and protective effect against aerosol Mycobacterium tuberculosis infection of vaccine formulations incorporating the semi-crystalline adjuvant δ-inulin (Advax). Advax formulated with CpG oligonucleotide and the QS-21 saponin (AdvaxCpQS) was the most effective combination, demonstrated by the capacity of CysVac2/AdvaxCpQS to significantly reduce the bacterial burden in the lungs of M. tuberculosis-infected mice. CysVac2/AdvaxCpQS protection was associated with rapid influx of neutrophils, macrophages and monocytes to the site of vaccination and the induction of antigen-specific IFN-γ+/IL-2+/TNF+ polyfunctional CD4+ T cells in the lung. When compared to the highly potent adjuvant combination of monophosphoryl lipid A and dimethyldioctadecylammonium bromide (MPL/DDA), AdvaxCpQS imparted a similar level of protective efficacy yet without the profound stimulation of inflammatory cytokines and vaccination site ulceration observed with MPL/DDA. Addition of DDA to CysVac2/ AdvaxCpQS further improved the protective effect of the vaccine, which correlated with increased polyfunctional CD4+ T cells in the lung but with no increase in vaccine reactogenicity. The data demonstrate that Advax formulations can decouple protective tuberculosis immunity from reactogenicity, making them ideal candidates for human application.HighlightsAdvax adjuvant formulations improve pulmonary protection against aerosol Mycobacterium tuberculosis infectionDifferent combinations of adjuvant components markedly influence the level of protection observedProtection is associated with the rapid influx of myeloid cells to the site of vaccination and the induction of antigen-specific polyfunctional CD4+ T cells in the lung.Advax formulations abrogate vaccine-site ulceration and inflammatory cytokine production


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 494 ◽  
Author(s):  
Teerasit Techawiwattanaboon ◽  
Christophe Barnier-Quer ◽  
Tanapat Palaga ◽  
Alain Jacquet ◽  
Nicolas Collin ◽  
...  

Leptospirosis vaccines with higher potency and reduced adverse effects are needed for human use. The carboxyl terminal domain of leptospiral immunoglobulin like protein A (LigAc) is currently the most promising candidate antigen for leptospirosis subunit vaccine. However, LigAc-based vaccines were unable to confer sterilizing immunity against Leptospira infection in animal models. Several factors including antigen properties, adjuvant, delivery system, and administration route need optimization to maximize vaccine efficacy. Our previous report demonstrated protective effects of the recombinant LigAc (rLigAc) formulated with liposome-based adjuvant, called LMQ (neutral liposome combined with monophosphoryl lipid A and Quillaja saponaria fraction 21) in hamsters. This study aimed to evaluate the impact of two commonly used administration routes, intramuscular (IM) and subcutaneous (SC), on immunogenicity and protective efficacy of rLigAc-LMQ administrated three times at 2-week interval. Two IM vaccinations triggered significantly higher levels of total anti-rLigAc IgG than two SC injections. However, comparable IgG titers and IgG2/IgG1 ratio was observed for both routes after the third immunization. The route of vaccine administration did not influence the survival rate (60%) and renal colonization against lethal Leptospira challenge. Importantly, the kidneys of IM group showed no pathological lesions while the SC group showed mild damage. In conclusion, IM vaccination with rLigAc-LMQ not only elicited faster antibody production but also protected from kidney damage following leptospiral infection better than SC immunization. However, both tested routes did not influence protective efficacy in terms of survival rate and the level of renal colonization.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 633
Author(s):  
Woo Sik Kim ◽  
Yong Zhi ◽  
Huichen Guo ◽  
Eui-Baek Byun ◽  
Jae Hyang Lim ◽  
...  

Virus-like particles (VLPs) have emerged as promising vaccine candidates against foot-and-mouth disease (FMD). However, such vaccines provide a relatively low level of protection against FMD virus (FMDV) because of their poor immunogenicity. Therefore, it is necessary to design effective vaccine strategies that induce more potent immunogenicity. In order to investigate the means to improve FMD VLP vaccine (VLPFMDV) immunogenicity, we encapsulated VLPs (MPL/DDA-VLPFMDV) with cationic liposomes based on dimethyldioctadecylammonium bromide (DDA) and/or monophosphoryl lipid A (MPL, TLR4 agonist) as adjuvants. Unlike inactivated whole-cell vaccines, VLPFMDV were successfully encapsulated in this MPL/DDA system. We found that MPL/DDA-VLPFMDV could induce strong cell-mediated immune responses by inducing not only VLP-specific IFN-γ+CD4+ (Th1), IL-17A+CD4+ (Th17), and IFN-γ+CD8+ (activated CD8 response) T cells, but also the development of VLP-specific multifunctional CD4+ and CD8+ memory T cells co-expressing IFN-γ, TNF-α, and IL-2. In addition, the MPL/DDA-VLPFMDV vaccine markedly induced VLP-specific antibody titers; in particular, the vaccine induced greater Th1-predominant IgG responses than VLPFMDV only and DDA-VLPFMDV. These results are expected to provide important clues for the development of an effective VLPFMDV that can induce cellular and humoral immune responses, and address the limitations seen in current VLP vaccines for various diseases.


2011 ◽  
Vol 18 (10) ◽  
pp. 1702-1709 ◽  
Author(s):  
Tansi Khodai ◽  
Debbie Chappell ◽  
Clare Christy ◽  
Paul Cockle ◽  
Jim Eyles ◽  
...  

ABSTRACTDespite several attempts to develop an effective prophylactic vaccine for HSV-2, all have failed to show efficacy in the clinic. The most recent of these failures was the GlaxoSmithKline (GSK) subunit vaccine based on the glycoprotein gD with the adjuvant monophosphoryl lipid A (MPL). In a phase 3 clinical trial, this vaccine failed to protect from HSV-2 disease, even though good neutralizing antibody responses were elicited. We aimed to develop a superior, novel HSV-2 vaccine containing either gD or gB alone or in combination, together with the potent adjuvant CpG oligodeoxynucleotides (CPG). The immunogenic properties of these vaccines were compared in mice. We show that gB/CPG/alum elicited a neutralizing antibody response similar to that elicited by gD/CPG/alum vaccine but a significantly greater gamma interferon (IFN-γ) T cell response. Furthermore, the combined gB-gD/CPG/alum vaccine elicited significantly greater neutralizing antibody and T cell responses than gD/MPL/alum. The efficacies of these candidate vaccines were compared in the mouse and guinea pig disease models, including a novel male guinea pig genital disease model. These studies demonstrated that increased immune response did not correlate to improved protection. First, despite a lower IFN-γ T cell response, the gD/CPG/alum vaccine was more effective than gB/CPG/alum in mice. Furthermore, the gB-gD/CPG/alum vaccine was no more effective than gD/MPL/alum in mice or male guinea pigs. We conclude that difficulties in correlating immune responses to efficacy in animal models will act as a deterrent to researchers attempting to develop effective HSV vaccines.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 131
Author(s):  
Christoph M. Janitzek ◽  
Philip H. R. Carlsen ◽  
Susan Thrane ◽  
Vijansh M. Khanna ◽  
Virginie Jakob ◽  
...  

Capsid-like particle (CLP) displays can be used to enhance the immunogenicity of vaccine antigens, but a better understanding of how CLP vaccines are best formulated and delivered is needed. This study compared the humoral immune responses in mice elicited against two different vaccine antigens (a bacterial protein and a viral peptide) delivered on an AP205 CLP platform using six different adjuvant formulations. In comparison to antibody responses obtained after immunization with the unadjuvanted CLP vaccine, three of the adjuvant systems (neutral liposomes/monophosphoryl lipid A/quillaja saponaria 21, squalene-in-water emulsion, and monophosphoryl lipid A) caused significantly increased antibody levels, whereas formulation with the three other adjuvants (aluminum hydroxide, cationic liposomes, and cationic microparticles) resulted in similar or even decreased antibody responses. When delivering the soluble bacterial protein in a squalene-in-water emulsion, 4-log lower IgG levels were obtained compared to when the protein was delivered on CLPs without the adjuvant. The AP205 CLP platform promoted induction of both IgG1 and IgG2 subclasses, which could be skewed towards a higher production of IgG1 (aluminum hydroxide). Compared to other routes, intramuscular administration elicited the highest IgG levels. These results indicate that the effect of the external adjuvant does not always synergize with the adjuvant effect of the CLP display, which underscores the need for empirical testing of different extrinsic adjuvants.


1996 ◽  
Vol 173 (1) ◽  
pp. 64-78 ◽  
Author(s):  
Innocent N. Mbawuike ◽  
Catherine Acuna ◽  
Diana Caballero ◽  
Khiem Pham-Nguyen ◽  
Brian Gilbert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document