scholarly journals Salmonella-Induced Filament Formation Is a Dynamic Phenotype Induced by Rapidly Replicating Salmonella enterica Serovar Typhimurium in Epithelial Cells

2005 ◽  
Vol 73 (2) ◽  
pp. 1204-1208 ◽  
Author(s):  
Cheryl L. Birmingham ◽  
Xiuju Jiang ◽  
Maikke B. Ohlson ◽  
Samuel I. Miller ◽  
John H. Brumell

ABSTRACT Salmonella enterica serovar Typhimurium has the fascinating ability to form tubular structures known as Salmonella-induced filaments (Sifs) in host cells. Here, we show that the prevalence of the Sif phenotype in HeLa cells is affected by host cell density, growth, and the multiplicity of infection. Sif formation was observed in cells that displayed rapid intracellular bacterial replication and was found to be dynamic, being maximal 8 to 10 h postinfection and declining thereafter. The virulence factors SpvB and SseJ were found to negatively modulate Sif formation. Our findings demonstrate the complex and dynamic nature of the Sif phenotype.

2009 ◽  
Vol 47 (11) ◽  
pp. 3413-3419 ◽  
Author(s):  
N. Bergeron ◽  
J. Corriveau ◽  
A. Letellier ◽  
F. Daigle ◽  
L. Lessard ◽  
...  

2001 ◽  
Vol 183 (15) ◽  
pp. 4652-4658 ◽  
Author(s):  
Hidenori Matsui ◽  
Christopher M. Bacot ◽  
Wendy A. Garlington ◽  
Thomas J. Doyle ◽  
Steve Roberts ◽  
...  

ABSTRACT In a mouse model of systemic infection, the spv genes carried on the Salmonella enterica serovar Typhimurium virulence plasmid increase the replication rate of salmonellae in host cells of the reticuloendothelial system, most likely within macrophages. A nonpolar deletion in the spvB gene greatly decreased virulence but could not be complemented by spvBalone. However, a low-copy-number plasmid expressing spvBCfrom a constitutive lacUV5 promoter did complement thespvB deletion. By examining a series of spvmutations and cloned spv sequences, we deduced thatspvB and spvC could be sufficient to confer plasmid-mediated virulence to S. enterica serovar Typhimurium. The spvBC-bearing plasmid was capable of replacing all of the spv genes, as well as the entire virulence plasmid, of serovar Typhimurium for causing systemic infection in BALB/c mice after subcutaneous, but not oral, inoculation. A point mutation in the spvBC plasmid preventing translation but not transcription of spvC eliminated the ability of the plasmid to confer virulence. Therefore, it appears that both spvB and spvC encode the principal effector factors for Spv- and plasmid-mediated virulence of serovar Typhimurium.


2002 ◽  
Vol 70 (6) ◽  
pp. 3264-3270 ◽  
Author(s):  
John H. Brumell ◽  
Patrick Tang ◽  
Michelle L. Zaharik ◽  
B. Brett Finlay

ABSTRACT Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that inhabits a vacuolar compartment, called the Salmonella-containing vacuole (SCV), in infected host cells. Maintenance of the SCV is accomplished by SifA, and mutants of this Salmonella pathogenicity island 2 type III effector replicate more efficiently in epithelial cells. Here we demonstrate that enhanced replication of sifA mutants occurs in the cytosol of these cells. Increased replication of wild-type bacteria was also observed in cells treated with wortmannin or expressing Rab5 Q79L or Rab7 N125I, all of which caused a loss of SCV integrity. Our findings demonstrate the requirement of the host cell endosomal system for maintenance of the SCV and that loss of this compartment allows increased replication of serovar Typhimurium in the cytosol of epithelial cells.


2020 ◽  
Vol 75 (10) ◽  
pp. 2914-2918 ◽  
Author(s):  
P Kanvatirth ◽  
O Rossi ◽  
O Restif ◽  
B A Blacklaws ◽  
P Tonks ◽  
...  

Abstract Objectives To determine the immune cell populations associated with Salmonella enterica serovar Typhimurium before and after ciprofloxacin treatment using a murine model of systemic infection. The effect of depletion of immune cells associating with Salmonella on treatment outcome was also determined. Methods We infected mice with a Salmonella enterica serovar Typhimurium strain expressing GFP and used multicolour flow cytometry to identify splenic immune cell populations associating with GFP-positive Salmonella before and after treatment with ciprofloxacin. This was followed by depletion of different immune cell populations using antibodies and liposomes. Results Our results identified CD11b+CD11chi/lo (dendritic cells/macrophages) and Ly6G+CD11b+ (neutrophils) leucocytes as the main host cell populations that are associated with Salmonella after ciprofloxacin treatment. We therefore proceeded to test the effects of depletion of such populations during treatment. We show that depletion of Ly6G+CD11b+ populations resulted in an increase in the number of viable bacterial cells in the spleen at the end of ciprofloxacin treatment. Conversely, treatment with clodronate liposomes during antimicrobial treatment, which depleted the CD11b+CD11chi/lo populations, resulted in lower numbers of viable bacteria in the tissues. Conclusions Our study identified host cells where Salmonella bacteria persist during ciprofloxacin treatment and revealed a dual and opposing effect of removal of Ly6G+CD11b+ and CD11b+CD11chi/lo host cells on the efficacy of antimicrobial treatment. This suggests a dichotomy in the role of these populations in clearance/persistence of Salmonella during antimicrobial treatment.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 246 ◽  
Author(s):  
Tomoko Yamaguchi ◽  
Shoko Toma ◽  
Naoya Terahara ◽  
Tomoko Miyata ◽  
Masamichi Ashihara ◽  
...  

The bacterial flagellum is a motility organelle consisting of a long helical filament as a propeller and a rotary motor that drives rapid filament rotation to produce thrust. Salmonella enterica serovar Typhimurium has two genes of flagellin, fljB and fliC, for flagellar filament formation and autonomously switches their expression at a frequency of 10−3–10−4 per cell per generation. We report here differences in their structures and motility functions under high-viscosity conditions. A Salmonella strain expressing FljB showed a higher motility than one expressing FliC under high viscosity. To examine the reasons for this motility difference, we carried out structural analyses of the FljB filament by electron cryomicroscopy and found that the structure was nearly identical to that of the FliC filament except for the position and orientation of the outermost domain D3 of flagellin. The density of domain D3 was much lower in FljB than FliC, suggesting that domain D3 of FljB is more flexible and mobile than that of FliC. These differences suggest that domain D3 plays an important role not only in changing antigenicity of the filament but also in optimizing motility function of the filament as a propeller under different conditions.


2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Gitte Maegaard Knudsen ◽  
Maj-Britt Nielsen ◽  
Line Elnif Thomsen ◽  
Søren Aabo ◽  
Ivan Rychlik ◽  
...  

2009 ◽  
Vol 58 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Laura E. J. Searle ◽  
Angus Best ◽  
Alejandro Nunez ◽  
Francisco J. Salguero ◽  
Linda Johnson ◽  
...  

The prebiotic Bimuno® is a mixture containing galactooligosaccharide, produced by the galactosyltransferase activity of Bifidobacterium bifidum NCIMB 41171 in the presence of lactose. Previous studies have implicated prebiotics in reducing infections by enteric pathogens, thus it was hypothesized that Bimuno® may confer some protection in the murine host from Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. In this study, infection caused by S. Typhimurium SL1344nalr in the presence or absence of Bimuno® was assessed using tissue culture assays, a murine ligated ileal gut loop model and a murine oral challenge model. In tissue culture adherence and invasion assays with HT-29-16E cells, the presence of ∼2 mM Bimuno® significantly reduced the invasion of S. Typhimurium SL1344nalr (P<0.0001). In the murine ligated ileal gut loops, the presence of Bimuno® prevented colonization and the associated pathology of S. Typhimurium. In the BALB/c mouse model, the oral delivery of Bimuno® prior to challenge with S. Typhimurium resulted in significant reductions in colonization in the five organs sampled, with highly significant reductions being observed in the spleen at 72 and 96 h post-challenge (P=0.0002, <0.0001, respectively). Collectively, the results indicate that Bimuno® significantly reduced the colonization and pathology associated with S. Typhimurium infection in a murine model system, possibly by reducing the invasion of the pathogen into host cells.


2018 ◽  
Vol 202 (1) ◽  
pp. 260-267 ◽  
Author(s):  
Alberto Bravo-Blas ◽  
Lotta Utriainen ◽  
Slater L. Clay ◽  
Verena Kästele ◽  
Vuk Cerovic ◽  
...  

2004 ◽  
Vol 186 (4) ◽  
pp. 1215-1219 ◽  
Author(s):  
Kristin Ehrbar ◽  
Siegfried Hapfelmeier ◽  
Bärbel Stecher ◽  
Wolf-Dietrich Hardt

ABSTRACT The Salmonella effector protein SopA is translocated into host cells via the SPI-1 type III secretion system (TTSS) and contributes to enteric disease. We found that the chaperone InvB binds to SopA and slightly stabilizes it in the bacterial cytosol and that it is required for its transport via the SPI-1 TTSS.


Sign in / Sign up

Export Citation Format

Share Document