scholarly journals Cyclic di-GMP Positively Regulates DNA Repair in Vibrio cholerae

2018 ◽  
Vol 200 (15) ◽  
Author(s):  
Nicolas L. Fernandez ◽  
Disha Srivastava ◽  
Amanda L. Ngouajio ◽  
Christopher M. Waters

ABSTRACT In Vibrio cholerae, high intracellular cyclic di-GMP (c-di-GMP) concentration are associated with a biofilm lifestyle, while low intracellular c-di-GMP concentrations are associated with a motile lifestyle. c-di-GMP also regulates other behaviors, such as acetoin production and type II secretion; however, the extent of phenotypes regulated by c-di-GMP is not fully understood. We recently determined that the sequence upstream of the DNA repair gene encoding 3-methyladenine glycosylase (tag) was positively induced by c-di-GMP, suggesting that this signaling system might impact DNA repair pathways. We identified a DNA region upstream of tag that is required for transcriptional induction by c-di-GMP. We further showed that c-di-GMP induction of tag expression was dependent on the c-di-GMP-dependent biofilm regulators VpsT and VpsR. In vitro binding assays and heterologous host expression studies show that VpsT acts directly at the tag promoter in response to c-di-GMP to induce tag expression. Last, we determined that strains with high c-di-GMP concentrations are more tolerant of the DNA-damaging agent methyl methanesulfonate. Our results indicate that the regulatory network of c-di-GMP in V. cholerae extends beyond biofilm formation and motility to regulate DNA repair through the VpsR/VpsT c-di-GMP-dependent cascade. IMPORTANCE Vibrio cholerae is a prominent human pathogen that is currently causing a pandemic outbreak in Haiti, Yemen, and Ethiopia. The second messenger molecule cyclic di-GMP (c-di-GMP) mediates the transitions in V. cholerae between a sessile biofilm-forming state and a motile lifestyle, both of which are important during V. cholerae environmental persistence and human infections. Here, we report that in V. cholerae c-di-GMP also controls DNA repair. We elucidate the regulatory pathway by which c-di-GMP increases DNA repair, allowing this bacterium to tolerate high concentrations of mutagens at high intracellular levels of c-di-GMP. Our work suggests that DNA repair and biofilm formation may be linked in V. cholerae.

Microbiology ◽  
2020 ◽  
Vol 166 (9) ◽  
pp. 880-890 ◽  
Author(s):  
Hiroshi Ogasawara ◽  
Toshiyuki Ishizuka ◽  
Shuhei Hotta ◽  
Michiko Aoki ◽  
Tomohiro Shimada ◽  
...  

Under stressful conditions, Escherichia coli forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.


1990 ◽  
Vol 10 (3) ◽  
pp. 1017-1022 ◽  
Author(s):  
S Picologlou ◽  
N Brown ◽  
S W Liebman

The Saccharomyces cerevisiae DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme which polyubiquitinates histones in vitro. Here we show that mutations in rad6 increase the frequency of transposition of the retrotransposon Ty into the CAN1 and URA3 loci. Using isogenic RAD6 and rad6 strains, we measured a more than 100-fold increase in the spontaneous rate of retrotransposition due to rad6, although there was no increase in the Ty message level. This is the first time that a mutation in a host gene has been shown to result in an increased rate of retrotransposition.


2020 ◽  
Vol 202 (18) ◽  
Author(s):  
Meng-Lun Hsieh ◽  
Christopher M. Waters ◽  
Deborah M. Hinton

ABSTRACT Vibrio cholerae biofilm biogenesis, which is important for survival, dissemination, and persistence, requires multiple genes in the Vibrio polysaccharides (vps) operons I and II as well as the cluster of ribomatrix (rbm) genes. Transcriptional control of these genes is a complex process that requires several activators/repressors and the ubiquitous signaling molecule, cyclic di-GMP (c-di-GMP). Previously, we demonstrated that VpsR directly activates RNA polymerase containing σ70 (σ70-RNAP) at the vpsL promoter (PvpsL), which precedes the vps-II operon, in a c-di-GMP-dependent manner by stimulating formation of the transcriptionally active, open complex. Using in vitro transcription, electrophoretic mobility shift assays, and DNase I footprinting, we show here that VpsR also directly activates σ70-RNAP transcription from other promoters within the biofilm formation cluster, including PvpsU, at the beginning of the vps-I operon, PrbmA, at the start of the rbm cluster, and PrbmF, which lies upstream of the divergent rbmF and rbmE genes. In this capacity, we find that VpsR is able to behave both as a class II activator, which functions immediately adjacent/overlapping the core promoter sequence (PvpsL and PvpsU), and as a class I activator, which functions farther upstream (PrbmA and PrbmF). Because these promoters vary in VpsR-DNA binding affinity in the absence and presence of c-di-GMP, we speculate that VpsR’s mechanism of activation is dependent on both the concentration of VpsR and the level of c-di-GMP to increase transcription, resulting in finely tuned regulation. IMPORTANCE Vibrio cholerae, the bacterial pathogen that is responsible for the disease cholera, uses biofilms to aid in survival, dissemination, and persistence. VpsR, which directly senses the second messenger c-di-GMP, is a major regulator of this process. Together with c-di-GMP, VpsR directly activates transcription by RNA polymerase containing σ70 from the vpsL biofilm biogenesis promoter. Using biochemical methods, we demonstrate for the first time that VpsR/c-di-GMP directly activates σ70-RNA polymerase at the first genes of the vps and ribomatrix operons. In this regard, it functions as either a class I or class II activator. Our results broaden the mechanism of c-di-GMP-dependent transcription activation and the specific role of VpsR in biofilm formation.


2014 ◽  
Vol 82 (4) ◽  
pp. 1616-1626 ◽  
Author(s):  
N. Holling ◽  
D. Lednor ◽  
S. Tsang ◽  
A. Bissell ◽  
L. Campbell ◽  
...  

ABSTRACTProteus mirabilisforms extensive crystalline biofilms on urethral catheters that occlude urine flow and frequently complicate the management of long-term-catheterized patients. Here, using random transposon mutagenesis in conjunction within vitromodels of the catheterized urinary tract, we elucidate the mechanisms underpinning the formation of crystalline biofilms byP. mirabilis. Mutants identified as defective in blockage of urethral catheters had disruptions in genes involved in nitrogen metabolism and efflux systems but were unaffected in general growth, survival in bladder model systems, or the ability to elevate urinary pH. Imaging of biofilms directly on catheter surfaces, along with quantification of levels of encrustation and biomass, confirmed that the mutants were attenuated specifically in the ability to form crystalline biofilms compared with that of the wild type. However, the biofilm-deficient phenotype of these mutants was not due to deficiencies in attachment to catheter biomaterials, and defects in later stages of biofilm development were indicated. For one blocking-deficient mutant, the disrupted gene (encoding a putative multidrug efflux pump) was also found to be associated with susceptibility to fosfomycin, and loss of this system or general inhibition of efflux pumps increased sensitivity to this antibiotic. Furthermore, homologues of this system were found to be widely distributed among other common pathogens of the catheterized urinary tract. Overall, our findings provide fundamental new insight into crystalline biofilm formation byP. mirabilis, including the link between biofilm formation and antibiotic resistance in this organism, and indicate a potential role for efflux pump inhibitors in the treatment or prevention ofP. mirabiliscrystalline biofilms.


2020 ◽  
Author(s):  
Fabian Braun ◽  
Linda Blomberg ◽  
Roman Akbar-Haase ◽  
Victor G. Puelles ◽  
Milagros N. Wong ◽  
...  

AbstractDNA repair is essential for preserving genome integrity and ensures cellular functionality and survival. Podocytes have a very limited regenerative capacity, and their survival is essential to maintain kidney function. While podocyte depletion is a hallmark of glomerular diseases, the mechanisms leading to severe podocyte injury and loss remain largely unclear. We detected perturbations in DNA repair in biopsies from patients with various podocyte-related glomerular diseases and identified single-nucleotide polymorphisms associated with the expression of DNA repair genes in patients suffering from proteinuric kidney disease. Genome maintenance through nucleotide excision repair (NER) proved to be indispensable for podocyte homeostasis. Podocyte-specific knockout of the NER endonuclease co-factor Ercc1 resulted in accumulation of DNA damage, proteinuria, podocyte loss and glomerulosclerosis. The response to this genomic stress was fundamentally different to other cell types, as podocytes activate mTORC1 signaling upon DNA damage in vitro and in vivo.Visual AbstractSchematic overview of main findings – Accumulation of genomic stress in podocytes occurs through endogenous or exogenous agents as well as genetic factors causing decreased DNA repair gene expression. Excessive DNA damage leads to the activation of mTORC1 triggering podocyte effacement, loss, glomerular scarring and proteinuric kidney disease.


1990 ◽  
Vol 10 (3) ◽  
pp. 1017-1022
Author(s):  
S Picologlou ◽  
N Brown ◽  
S W Liebman

The Saccharomyces cerevisiae DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme which polyubiquitinates histones in vitro. Here we show that mutations in rad6 increase the frequency of transposition of the retrotransposon Ty into the CAN1 and URA3 loci. Using isogenic RAD6 and rad6 strains, we measured a more than 100-fold increase in the spontaneous rate of retrotransposition due to rad6, although there was no increase in the Ty message level. This is the first time that a mutation in a host gene has been shown to result in an increased rate of retrotransposition.


2002 ◽  
Vol 16 (4) ◽  
pp. 383-387 ◽  
Author(s):  
R.A Crallan ◽  
P.G Lord ◽  
R.W Rees ◽  
J Southgate

2011 ◽  
Vol 56 (3) ◽  
pp. 1162-1169 ◽  
Author(s):  
Edward Sionov ◽  
Yun C. Chang ◽  
H. Martin Garraffo ◽  
Michael A. Dolan ◽  
Mahmoud A. Ghannoum ◽  
...  

ABSTRACTCryptococcus neoformansstrains resistant to azoles due to mutations causing alterations in theERG11gene, encoding lanosterol 14α-demethylase, have rarely been reported. In this study, we have characterized aC. neoformansserotype A strain that is resistant to high concentrations of fluconazole (FLC). This strain, which was isolated from an FLC-treated patient, contained five missense mutations in theERG11gene compared to the sequence of reference strain H99. Molecular manipulations of theERG11gene coupled with susceptibility to triazole revealed that a single missense mutation resulting in the replacement of tyrosine by phenylalanine at amino acid 145 was sufficient to cause the high FLC resistance of the strain. Importantly, this newly identified point mutation in theERG11gene ofC. neoformansafforded resistance to voriconazole (VRC) but increased susceptibility to itraconazole (ITC) and posaconazole (PSC), which are structurally similar to each other but distinct from FLC/VRC. Thein vitrosusceptibility/resistance of the strains with or without the missense mutation was reflected in the therapeutic efficacy of FLC versus ITC in the animals infected with the strains. This study shows the importance of the Y145F alteration of Erg11 inC. neoformansfor manifestation of differential susceptibility toward different triazoles. It underscores the necessity ofin vitrosusceptibility testing for each FLC-resistantC. neoformansclinical isolate against different groups of azoles in order to assist patient management.


2015 ◽  
Vol 197 (7) ◽  
pp. 1221-1235 ◽  
Author(s):  
David Zamorano-Sánchez ◽  
Jiunn C. N. Fong ◽  
Sefa Kilic ◽  
Ivan Erill ◽  
Fitnat H. Yildiz

ABSTRACTThe ability to form biofilms is critical for environmental survival and transmission ofVibrio cholerae, a facultative human pathogen responsible for the disease cholera. Biofilm formation is controlled by several transcriptional regulators and alternative sigma factors. In this study, we report that the two main positive regulators of biofilm formation, VpsR and VpsT, bind to nonoverlapping target sequences in the regulatory region ofvpsL in vitro. VpsR binds to a proximal site (the R1 box) as well as a distal site (the R2 box) with respect to the transcriptional start site identified upstream ofvpsL. The VpsT binding site (the T box) is located between the R1 and R2 boxes. While mutations in the T and R boxes resulted in a decrease invpsLexpression, deletion of the T and R2 boxes resulted in an increase invpsLexpression. Analysis of the role of H-NS invpsLexpression revealed that deletion ofhnsresulted in enhancedvpsLexpression. The level ofvpsLexpression was higher in anhns vpsTdouble mutant than in the parental strain but lower than that in anhnsmutant.In silicoanalysis of the regulatory regions of the VpsR and VpsT targets resulted in the identification of conserved recognition motifs for VpsR and VpsT and revealed that operons involved in biofilm formation andvpsTare coregulated by VpsR and VpsT. Furthermore, a comparative genomics analysis revealed substantial variability in the promoter region of thevpsTandvpsLgenes among extantV. choleraeisolates, suggesting that regulation of biofilm formation is under active selection.IMPORTANCEVibrio choleraecauses cholera and is a natural inhabitant of aquatic environments. One critical factor that is important for environmental survival and transmission ofV. choleraeis the microbe's ability to form biofilms, which are surface-associated communities encased in a matrix composed of the exopolysaccharide VPS (Vibriopolysaccharide), proteins, and nucleic acids. Two proteins, VpsR and VpsT, positively regulate VPS production and biofilm formation. We characterized the structural features of the promoter of thevpsLgene, determined the target sequences recognized by VpsT and VpsR, and analyzed their distribution and conservation patterns in multipleV. choleraeisolates. This work fills a fundamental gap in our understanding of the regulatory mechanisms employed by the master regulators VpsR and VpsT in controlling biofilm matrix production.


Sign in / Sign up

Export Citation Format

Share Document