scholarly journals Structural Characterization of the Ribosome Maturation Protein, RimM

2007 ◽  
Vol 189 (17) ◽  
pp. 6397-6406 ◽  
Author(s):  
Sakura Suzuki ◽  
Ayako Tatsuguchi ◽  
Eiko Matsumoto ◽  
Masahito Kawazoe ◽  
Tatsuya Kaminishi ◽  
...  

ABSTRACT The RimM protein has been implicated in the maturation of the 30S ribosomal subunit. It binds to ribosomal protein S19, located in the head domain of the 30S subunit. Multiple sequence alignments predicted that RimM possesses two domains in its N- and C-terminal regions. In the present study, we have produced Thermus thermophilus RimM in both the full-length form (162 residues) and its N-terminal fragment, spanning residues 1 to 85, as soluble proteins in Escherichia coli and have performed structural analyses by nuclear magnetic resonance spectroscopy. Residues 1 to 80 of the RimM protein fold into a single structural domain adopting a six-stranded β-barrel fold. On the other hand, the C-terminal region of RimM (residues 81 to 162) is partly folded in solution. Analyses of 1H-15N heteronuclear single quantum correlation spectra revealed that a wide range of residues in the C-terminal region, as well as the residues in the vicinity of a hydrophobic patch in the N-terminal domain, were dramatically affected upon complex formation with ribosomal protein S19.

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 597
Author(s):  
Haoran Zhang ◽  
Qiuxiang Zhou ◽  
Chenyun Guo ◽  
Liubin Feng ◽  
Huilin Wang ◽  
...  

Multidrug-resistant tuberculosis (TB) is a serious threat to public health, calling for the development of new anti-TB drugs. Chaperon protein RimM, involved in the assembly of ribosomal protein S19 into 30S ribosomal subunit during ribosome maturation, is a potential drug target for TB treatment. The C-terminal domain (CTD) of RimM is primarily responsible for binding S19. However, both the CTD structure of RimM from Mycobacterium tuberculosis (MtbRimMCTD) and the molecular mechanisms underlying MtbRimMCTD binding S19 remain elusive. Here, we report the solution structure, dynamics features of MtbRimMCTD, and its interaction with S19. MtbRimMCTD has a rigid hydrophobic core comprised of a relatively conservative six-strand β-barrel, tailed with a short α-helix and interspersed with flexible loops. Using several biophysical techniques including surface plasmon resonance (SPR) affinity assays, nuclear magnetic resonance (NMR) assays, and molecular docking, we established a structural model of the MtbRimMCTD–S19 complex and indicated that the β4-β5 loop and two nonconserved key residues (D105 and H129) significantly contributed to the unique pattern of MtbRimMCTD binding S19, which might be implicated in a form of orthogonality for species-dependent RimM–S19 interaction. Our study provides the structural basis for MtbRimMCTD binding S19 and is beneficial to the further exploration of MtbRimM as a potential target for the development of new anti-TB drugs.


FEBS Letters ◽  
1997 ◽  
Vol 415 (2) ◽  
pp. 155-159 ◽  
Author(s):  
Natalia L Davydova ◽  
Alexey V Rak ◽  
Olga I Gryaznova ◽  
Anders Liljas ◽  
Bengt-Harald Jonsson ◽  
...  

1999 ◽  
Vol 292 (5) ◽  
pp. 1071-1081 ◽  
Author(s):  
Magnus Helgstrand ◽  
Alexey V Rak ◽  
Peter Allard ◽  
Natalia Davydova ◽  
Maria B Garber ◽  
...  

2019 ◽  
Vol 36 (10) ◽  
pp. 2340-2351 ◽  
Author(s):  
Raja Hashim Ali ◽  
Marcin Bogusz ◽  
Simon Whelan

Abstract Multiple sequence alignment (MSA) is ubiquitous in evolution and bioinformatics. MSAs are usually taken to be a known and fixed quantity on which to perform downstream analysis despite extensive evidence that MSA accuracy and uncertainty affect results. These errors are known to cause a wide range of problems for downstream evolutionary inference, ranging from false inference of positive selection to long branch attraction artifacts. The most popular approach to dealing with this problem is to remove (filter) specific columns in the MSA that are thought to be prone to error. Although popular, this approach has had mixed success and several studies have even suggested that filtering might be detrimental to phylogenetic studies. We present a graph-based clustering method to address MSA uncertainty and error in the software Divvier (available at https://github.com/simonwhelan/Divvier), which uses a probabilistic model to identify clusters of characters that have strong statistical evidence of shared homology. These clusters can then be used to either filter characters from the MSA (partial filtering) or represent each of the clusters in a new column (divvying). We validate Divvier through its performance on real and simulated benchmarks, finding Divvier substantially outperforms existing filtering software by retaining more true pairwise homologies calls and removing more false positive pairwise homologies. We also find that Divvier, in contrast to other filtering tools, can alleviate long branch attraction artifacts induced by MSA and reduces the variation in tree estimates caused by MSA uncertainty.


2018 ◽  
Author(s):  
Santi Mestre-Fos ◽  
Petar I. Penev ◽  
Suttipong Suttapitugsakul ◽  
Chieri Ito ◽  
Anton S. Petrov ◽  
...  

ABSTRACTProfound similarities and critical differences mark ribosomes across phylogeny. The ribosomal core, approximated by the prokaryotic ribosome, is universal, yet mammalian ribosomes are nearly twice as large as those of prokaryotes. Differences in size are due in part to rRNA expansion segments. Here we show rRNA tentacles of Expansion Segment 7 (ES7) of Homo sapiens can form G-quadruplexes in vitro. G-quadruplex-forming regions are located on the most surface-exposed regions of the ribosome, near the termini of rRNA tentacles. We characterized rRNA of the large ribosomal subunit by computation, circular dichroism, gel mobility, fluorescent probes, nuclease accessibility, electrophoretic mobility shifts and blotting. We investigated ES7 and oligomers derived from ES7, intact 28S rRNA, and 80S ribosomes and polysomes. We used mass spectrometry to identify proteins that bind to rRNA G-quadruplexes in cell lysates. Proteins that associate with rRNA G-quadruplexes include helicases (DDX3, CNBP, DDX21, DDX17) and heterogeneous nuclear ribonucleoproteins (hnRNPs). And finally, by multiple sequence alignments, we observed that G-quadruplex-forming sequences appear to be a general feature LSU rRNA of the phylum Chordata but not in other phyla. It is known that G-quadruplexes form in telomeres, promoters, and untranslated regions of mRNA but, to our knowledge, they have not been reported previously in ribosomes.


2013 ◽  
Vol 124 (10) ◽  
pp. 627-637 ◽  
Author(s):  
Jun Lv ◽  
Xiao Ru Huang ◽  
Jörg Klug ◽  
Suada Fröhlich ◽  
Philipp Lacher ◽  
...  

RPS19 (ribosomal protein S19), a component of the 40S small ribosomal subunit, has recently been identified to bind the pro-inflammatory cytokine macrophage MIF (migration inhibitory factor). In vitro experiments identify RPS19 as the first endogenous MIF inhibitor by blocking the binding of MIF to its receptor CD74 and MIF functions on monocyte adherence to endothelial cells. In the present study, we sought to establish whether recombinant RPS19 can exert anti-inflammatory effects in a mouse model of anti-GBM (glomerular basement membrane) GN (glomerulonephritis) in which MIF is known to play an important role. Accelerated anti-GBM GN was induced in C57BL/6J mice by immunization with sheep IgG followed 5 days later by administration of sheep anti-mouse GBM serum. Groups of eight mice were treated once daily by intraperitoneal injection with 6 mg of RPS19/kg of body weight or an irrelevant control protein (human secretoglobin 2A1), or received no treatment, from day 0 until being killed on day 10. Mice that received control or no treatment developed severe crescentic anti-GBM disease on day 10 with increased serum creatinine, declined creatinine clearance and increased proteinuria. These changes were associated with up-regulation of MIF and its receptor CD74 activation of ERK (extracellular-signal-regulated kinase) and NF-κB (nuclear factor κB) signalling, prominent macrophage and T-cell infiltration, as well as up-regulation of Th1 [T-bet and IFNγ (interferon γ)] and Th17 [STAT3 (signal transducer and activator of transcription 3) and IL (interleukin)-17A] as well as IL-1β and TNFα (tumour necrosis factor α). In contrast, RPS19 treatment largely prevented the development of glomerular crescents and glomerular necrosis, and prevented renal dysfunction and proteinuria (all P<0.001). Of note, RPS19 blocked up-regulation of MIF and CD74 and inactivated ERK and NF-κB signalling, thereby inhibiting macrophage and T-cell infiltration, Th1 and Th17 responses and up-regulation of pro-inflammatory cytokines (all P<0.01). These results demonstrate that RPS19 is a potent anti-inflammatory agent, which appears to work primarily by inhibiting MIF signalling.


2010 ◽  
Vol 84 (23) ◽  
pp. 12450-12453 ◽  
Author(s):  
Absarul Haque ◽  
Mohammad A. Mir

ABSTRACT Hantaviruses, members of the Bunyaviridae family, are emerging category A pathogens that initiate the translation of their capped mRNAs by a novel mechanism mediated by viral nucleocapsid protein (N). N specifically binds to the mRNA 5′ m7G cap and 40S ribosomal subunit, a complex of 18S rRNA and multiple ribosomal proteins. Here, we show that N specifically interacts with the ribosomal protein S19 (RPS19), located at the head region of the 40S subunit. We suggest that this N-RPS19 interaction facilitates ribosome loading on capped mRNAs during N-mediated translation initiation.


2020 ◽  
Author(s):  
Leonidas E. Bantis ◽  
Daniel J. Parente ◽  
Aron W. Fenton ◽  
Liskin Swint-Kruse

AbstractAmino acid variation at “rheostat” positions provides opportunity to modulate various aspects of protein function – such as binding affinity or allosteric coupling – across a wide range. Previously a subclass of “multiplex” rheostat positions was identified at which substitutions simultaneously modulated more than one functional parameter. Using the Miller laboratory’s dataset of ∼4000 variants of lactose repressor protein (LacI), we compared the structural properties of multiplex rheostat positions with (i) “single” rheostat positions that modulate only one functional parameter, (ii) “toggle” positions that follow textbook substitution rules, and (iii) “neutral” positions that tolerate any substitution without changing function. The combined rheostat classes comprised >40% of LacI positions, more than either toggle or neutral positions. Single rheostat positions were broadly distributed over the structure. Multiplex rheostat positions structurally overlapped with positions involved in allosteric regulation. When their phenotypic outcomes were interpreted within a thermodynamic framework, functional changes at multiplex positions were uncorrelated. This suggests that substitutions lead to complex changes in the underlying molecular biophysics. Bivariable and multivariable analyses of evolutionary signals within multiple sequence alignments could not differentiate single and multiplex rheostat positions. Phylogenetic analyses – such as ConSurf – could distinguish rheostats from toggle and neutral positions. Multivariable analyses could also identify a subset of neutral positions with high probability. Taken together, these results suggest that detailed understanding of the underlying molecular biophysics, likely including protein dynamics, will be required to discriminate single and multiplex rheostat positions from each other and to predict substitution outcomes at these sites.


2012 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mohd Fakharul Zaman Raja Yahya ◽  
Hasidah Mohd Sidek

Malaria parasites, Plasmodium can infect a wide range of hosts including humans and rodents. There are two copies of mitogen activated protein kinases (MAPKs) in Plasmodium, namely MAPK1 and MAPK2. The MAPKs have been studied extensively in the human Plasmodium, P. falciparum. However, the MAPKs from other Plasmodium species have not been characterized and it is therefore the premise of presented study to characterize the MAPKs from other Plasmodium species-P. vivax, P. knowlesi, P. berghei, P. chabaudi and P.yoelli using a series of publicly available bioinformatic tools. In silico data indicates that all Plasmodium MAPKs are nuclear-localized and contain both a nuclear localization signal (NLS) and a Leucine-rich nuclear export signal (NES). The activation motifs of TDY and TSH were found to be fully conserved in Plasmodium MAPK1 and MAPK2, respectively. The detailed manual inspection of a multiple sequence alignment (MSA) construct revealed a total of 17 amino acid stack patterns comprising of different amino acids present in MAPKJ and MAPK2 respectively, with respect to rodent and human Plasmodia. It is proposed that these amino acid stack patterns may be useful in explaining the disparity between rodent and human Plasmodium MAPKs. 


2012 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mohd Fakharul Zaman Raja Yahya ◽  
Hasidah Mohd Sidek

Malaria parasites, Plasmodium can infect a wide range ofhosts including humans and rodents. There are two copies ofmitogen activated protein kinases (MAPKs) in Plasmodium, namely MAPK1 and MAPK2. The MAPKs have been studied extensively in the human Plasmodium, P. falciparum. However, the MAPKs from other Plasmodium species have not been characterized and it is therefore the premise ofpresented study to characterize the MAPKs from other Plasmodium species-P. vivax, P. knowlesi, P. berghei, P. chabaudi and P.yoelli using a series ofpublicly available bioinformatic tools. In silico data indicates that all Plasmodium MAPKs are nuclear-localizedandcontain both a nuclear localization signal (NLS) anda Leucine-rich nuclear export signal (NES). The activation motifs ofTDYand TSH werefound to befully conserved in Plasmodium MAPK1 and MAPK2, respectively. The detailed manual inspection ofa multiple sequence alignment (MSA) construct revealed a total of 17 amino acid stack patterns comprising ofdifferent amino acids present in MAPK1 and MAPK2 respectively, with respect to rodent and human Plasmodia. 1t is proposed that these amino acid stack patterns may be useful in explaining the disparity between rodent and human Plasmodium MAPKs.


Sign in / Sign up

Export Citation Format

Share Document