scholarly journals Reclassification of the Specialized Metabolite Producer Pseudomonas mesoacidophila ATCC 31433 as a Member of the Burkholderia cepacia Complex

2017 ◽  
Vol 199 (13) ◽  
Author(s):  
E. Joel Loveridge ◽  
Cerith Jones ◽  
Matthew J. Bull ◽  
Suzy C. Moody ◽  
Małgorzata W. Kahl ◽  
...  

ABSTRACT Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the β-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis. The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization. IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis. Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted.

Author(s):  
Adrien Biessy ◽  
Marie Ciotola ◽  
Mélanie Cadieux ◽  
Daphné Albert ◽  
Martin Filion

Numerous bacterial strains from the Burkholderia cepacia complex display biocontrol activity. Here, we report the complete genome sequences of five Burkholderia strains isolated from soil. Biosynthetic gene clusters responsible for the production of antimicrobial compounds were found in the genome of these strains, which display biocontrol activity against various lettuce pathogens.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Kat Steinke ◽  
Omkar S. Mohite ◽  
Tilmann Weber ◽  
Ákos T. Kovács

ABSTRACT Microbes produce a plethora of secondary (or specialized) metabolites that, although not essential for primary metabolism, benefit them to survive in the environment, communicate, and influence cell differentiation. Biosynthetic gene clusters (BGCs), responsible for the production of these secondary metabolites, are readily identifiable on bacterial genome sequences. Understanding the phylogeny and distribution of BGCs helps us to predict the natural product synthesis ability of new isolates. Here, we examined 310 genomes from the Bacillus subtilis group, determined the inter- and intraspecies patterns of absence/presence for all BGCs, and assigned them to defined gene cluster families (GCFs). This allowed us to establish patterns in the distribution of both known and unknown products. Further, we analyzed variations in the BGC structures of particular families encoding natural products, such as plipastatin, fengycin, iturin, mycosubtilin, and bacillomycin. Our detailed analysis revealed multiple GCFs that are species or clade specific and a few others that are scattered within or between species, which will guide exploration of the chemodiversity within the B. subtilis group. Surprisingly, we discovered that partial deletion of BGCs and frameshift mutations in selected biosynthetic genes are conserved within phylogenetically related isolates, although isolated from around the globe. Our results highlight the importance of detailed genomic analysis of BGCs and the remarkable phylogenetically conserved erosion of secondary metabolite biosynthetic potential in the B. subtilis group. IMPORTANCE Members of the B. subtilis species complex are commonly recognized producers of secondary metabolites, among those, the production of antifungals, which makes them promising biocontrol strains. While there are studies examining the distribution of well-known secondary metabolites in Bacilli, intraspecies clade-specific distribution has not been systematically reported for the B. subtilis group. Here, we report the complete biosynthetic potential within the B. subtilis group to explore the distribution of the biosynthetic gene clusters and to reveal an exhaustive phylogenetic conservation of secondary metabolite production within Bacillus that supports the chemodiversity within this species complex. We identify that certain gene clusters acquired deletions of genes and particular frameshift mutations, rendering them inactive for secondary metabolite biosynthesis, a conserved genetic trait within phylogenetically conserved clades of certain species. The overview guides the assignment of the secondary metabolite production potential of newly isolated Bacillus strains based on genome sequence and phylogenetic relatedness.


2019 ◽  
Vol 103 (8) ◽  
pp. 3277-3287 ◽  
Author(s):  
Phuong Nguyen Tran ◽  
Ming-Ren Yen ◽  
Chen-Yu Chiang ◽  
Hsiao-Ching Lin ◽  
Pao-Yang Chen

2016 ◽  
Vol 82 (19) ◽  
pp. 5795-5805 ◽  
Author(s):  
Min Xu ◽  
Yemin Wang ◽  
Zhilong Zhao ◽  
Guixi Gao ◽  
Sheng-Xiong Huang ◽  
...  

ABSTRACTGenome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries inStreptomycesspp. We demonstrate mining from a strain ofStreptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate hostStreptomyces lividansSBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic fromS. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways.IMPORTANCEMicrobial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites fromStreptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including streptothricins, borrelidin, two novel lipopeptides, and one unknown antibiotic fromStreptomyces rocheiSal35. The transfer, expression, and screening of the library were all performed in a high-throughput way, so that this approach is scalable and adaptable to industrial automation for next-generation antibiotic discovery.


2018 ◽  
Vol 200 (21) ◽  
Author(s):  
Karla J. Esquilín-Lebrón ◽  
Tye O. Boynton ◽  
Lawrence J. Shimkets ◽  
Michael G. Thomas

ABSTRACTOne mechanism by which bacteria and fungi produce bioactive natural products is the use of nonribosomal peptide synthetases (NRPSs). Many NRPSs in bacteria require members of the MbtH-like protein (MLP) superfamily for their solubility or function. Although MLPs are known to interact with the adenylation domains of NRPSs, the role MLPs play in NRPS enzymology has yet to be elucidated. MLPs are nearly always encoded within the biosynthetic gene clusters (BGCs) that also code for the NRPSs that interact with the MLP. Here, we identify 50 orphan MLPs from diverse bacteria. An orphan MLP is one that is encoded by a gene that is not directly adjacent to genes predicted to be involved in nonribosomal peptide biosynthesis. We targeted the orphan MLP MXAN_3118 fromMyxococcus xanthusDK1622 for characterization. TheM. xanthusDK1622 genome contains 15 NRPS-encoding BGCs but only one MLP-encoding gene (MXAN_3118). We tested the hypothesis that MXAN_3118 interacts with one or more NRPS using a combination ofin vivoandin vitroassays. We determined that MXAN_3118 interacts with at least seven NRPSs from distinct BGCs. We show that one of these BGCs codes for NRPS enzymology that likely produces a valine-rich natural product that inhibits the clumping ofM. xanthusDK1622 in liquid culture. MXAN_3118 is the first MLP to be identified that naturally interacts with multiple NRPS systems in a single organism. The finding of an MLP that naturally interacts with multiple NRPS systems suggests it may be harnessed as a “universal” MLP for generating functional hybrid NRPSs.IMPORTANCEMbtH-like proteins (MLPs) are essential accessory proteins for the function of many nonribosomal peptide synthetases (NRPSs). We identified 50 MLPs from diverse bacteria that are coded by genes that are not located near any NRPS-encoding biosynthetic gene clusters (BGCs). We define these as orphan MLPs because their NRPS partner(s) is unknown. Investigations into the orphan MLP fromMyxococcus xanthusDK1622 determined that it interacts with NRPSs from at least seven distinct BGCs. Support for these MLP-NRPS interactions came from the use of a bacterial two-hybrid assay and copurification of the MLP with various NRPSs. The flexibility of this MLP to naturally interact with multiple NRPSs led us to hypothesize that this MLP may be used as a “universal” MLP during the construction of functional hybrid NRPSs.


2016 ◽  
Vol 82 (6) ◽  
pp. 1945-1957 ◽  
Author(s):  
Nestor Zaburannyi ◽  
Boyke Bunk ◽  
Josef Maier ◽  
Jörg Overmann ◽  
Rolf Müller

ABSTRACTHere, we report the complete genome sequence of the type strain of the myxobacterial genusChondromyces,Chondromyces crocatusCm c5. It presents one of the largest prokaryotic genomes featuring a single circular chromosome and no plasmids. Analysis revealed an enlarged set of tRNA genes, along with reduced pressure on preferred codon usage compared to that of other bacterial genomes. The large coding capacity and the plethora of encoded secondary metabolite biosynthetic gene clusters are in line with the capability of Cm c5 to produce an arsenal of antibacterial, antifungal, and cytotoxic compounds. Known pathways of the ajudazol, chondramide, chondrochloren, crocacin, crocapeptin, and thuggacin compound families are complemented by many more natural compound biosynthetic gene clusters in the chromosome. Whole-genome comparison of the fruiting-body-forming type strain (Cm c5, DSM 14714) to an accustomed laboratory strain which has lost this ability (nonfruiting phenotype, Cm c5 fr−) revealed genetic changes in three loci. In addition to the low synteny found with the closest sequenced representative of the same family,Sorangium cellulosum, extensive genetic information duplication and broad application of eukaryotic-type signal transduction systems are hallmarks of this 11.3-Mbp prokaryotic genome.


2020 ◽  
Vol 9 (24) ◽  
Author(s):  
Nathan Liang ◽  
Suha Jabaji

ABSTRACT Bacillus velezensis strain E68 is a biosurfactant-producing bacterium isolated from an oil battery near Chauvin, Alberta, Canada. Strain E68 exhibited antimicrobial activity against fungal pathogens and could potentially serve as a biological control agent. Its genome was sequenced and annotated, revealing the presence of multiple lipopeptide biosynthetic gene clusters.


2020 ◽  
Vol 9 (21) ◽  
Author(s):  
Anna Tippelt ◽  
Markus Nett ◽  
M. Soledad Vela Gurovic

ABSTRACT Streptomyces albus CAS922 was isolated from sunflower seed hulls. Its fully sequenced genome harbors a multitude of genes for carbohydrate-active enzymes, which likely facilitate growth on lignocellulosic biomass. Furthermore, the presence of 27 predicted biosynthetic gene clusters indicates a significant potential for the production of bioactive secondary metabolites.


2019 ◽  
Vol 8 (25) ◽  
Author(s):  
Stine Sofie Frank Nielsen ◽  
Simone Weiss ◽  
Seven Nazipi ◽  
Ian P. G. Marshall ◽  
Trine Bilde ◽  
...  

We present the high-quality draft genome sequence of Bacillus subtilis SB-14, isolated from the Namibian social spider Stegodyphus dumicola. In accordance with its antimicrobial activity, both known and potentially novel antimicrobial biosynthetic gene clusters were identified in the genome of SB-14.


2019 ◽  
Vol 8 (24) ◽  
Author(s):  
Robert A. Arthur ◽  
Ainsley C. Nicholson ◽  
Ben W. Humrighouse ◽  
John R. McQuiston ◽  
Brent A. Lasker

Kroppenstedtia sanguinis X0209T, a thermoactinomycete, was isolated from the blood of a patient in Sweden. We report on the draft genome sequence obtained with an Illumina MiSeq instrument. The assembled genome totaled 3.73 Mb and encoded 3,583 proteins. Putative genes for virulence, transposons, and biosynthetic gene clusters have been identified.


Sign in / Sign up

Export Citation Format

Share Document