scholarly journals A Mutation within the β Subunit of Escherichia coli RNA Polymerase Impairs Transcription from Bacteriophage T4 Middle Promoters

2010 ◽  
Vol 192 (21) ◽  
pp. 5580-5587 ◽  
Author(s):  
Tamara D. James ◽  
Michael Cashel ◽  
Deborah M. Hinton

ABSTRACT During infection of Escherichia coli, bacteriophage T4 usurps the host transcriptional machinery, redirecting it to the expression of early, middle, and late phage genes. Middle genes, whose expression begins about 1 min postinfection, are transcribed both from the extension of early RNA into middle genes and by the activation of T4 middle promoters. Middle-promoter activation requires the T4 transcriptional activator MotA and coactivator AsiA, which are known to interact with σ70, the specificity subunit of RNA polymerase. T4 motA amber [motA(Am)] or asiA(Am) phage grows poorly in wild-type E. coli. However, previous work has found that T4 motA(Am)does not grow in the E. coli mutant strain TabG. We show here that the RNA polymerase in TabG contains two mutations within its β-subunit gene: rpoB(E835K) and rpoB(G1249D). We find that the G1249D mutation is responsible for restricting the growth of either T4 motA(Am)or asiA(Am) and for impairing transcription from MotA/AsiA-activated middle promoters in vivo. With one exception, transcription from tested T4 early promoters is either unaffected or, in some cases, even increases, and there is no significant growth phenotype for the rpoB(E835K G1249D) strain in the absence of T4 infection. In reported structures of thermophilic RNA polymerase, the G1249 residue is located immediately adjacent to a hydrophobic pocket, called the switch 3 loop. This loop is thought to aid in the separation of the RNA from the DNA-RNA hybrid as RNA enters the RNA exit channel. Our results suggest that the presence of MotA and AsiA may impair the function of this loop or that this portion of the β subunit may influence interactions among MotA, AsiA, and RNA polymerase.

Genetics ◽  
1986 ◽  
Vol 114 (3) ◽  
pp. 669-685
Author(s):  
Karin Carlson ◽  
Aud Ȗvervatin

ABSTRACT Bacteriophage T4 mutants defective in gene 56 (dCTPase) synthesize DNA where cytosine (Cyt) partially or completely replaces hydroxymethylcytosine (HmCyt). This Cyt-DNA is degraded in vivo by T4 endonucleases II and IV, and by the exonuclease coded or controlled by genes 46 and 47.—Our results demonstrate that T4 endonuclease II is the principal enzyme initiating degradation of T4 Cyt-DNA. The activity of endonuclease IV, but not that of endonuclease II, was stimulated in the presence of a wild-type dCMP hydroxymethylase, also when no HmCyt was incorporated into phage DNA, suggesting the possibility of direct endonuclease IV-dCMP hydroxymethylase interactions. Endonuclease II activity, on the other hand, was almost completely inhibited in the presence of very small amounts of HmCyt (3-9% of total Cyt + HmCyt) in the DNA. Possible mechanisms for this inhibition are discussed.—The E. coli RNA polymerase modified by the products of T4 genes 33 and 55 was capable of initiating DNA synthesis on a Cyt-DNA template, although it probably cannot do so on an HmCyt template. In the presence of an active endonuclease IV, Cyt-DNA synthesis was arrested 10-30 min after infection, probably due to damage to the template. Cyt-DNA synthesis dependent on the unmodified (33  -  55  -) RNA polymerase was less sensitive to endonuclease IV action.


2008 ◽  
Vol 190 (10) ◽  
pp. 3434-3443 ◽  
Author(s):  
Umender K. Sharma ◽  
Dipankar Chatterji

ABSTRACT Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, σ70, of E. coli. Though both factors are known to interact with the C-terminal region of σ70, the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to σ70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with σ70 studied by using the yeast two-hybrid system revealed that region 4 of σ70 is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of σ70 as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to σ70.


2003 ◽  
Vol 71 (6) ◽  
pp. 3088-3096 ◽  
Author(s):  
Peter Redford ◽  
Paula L. Roesch ◽  
Rodney A. Welch

ABSTRACT Extraintestinal Escherichia coli strains cause meningitis, sepsis, urinary tract infection, and other infections outside the bowel. We examined here extraintestinal E. coli strain CFT073 by differential fluorescence induction. Pools of CFT073 clones carrying a CFT073 genomic fragment library in a promoterless gfp vector were inoculated intraperitoneally into mice; bacteria were recovered by lavage 6 h later and then subjected to fluorescence-activated cell sorting. Eleven promoters were found to be active in the mouse but not in Luria-Bertani (LB) broth culture. Three are linked to genes for enterobactin, aerobactin, and yersiniabactin. Three others are linked to the metabolic genes metA, gltB, and sucA, and another was linked to iha, a possible adhesin. Three lie before open reading frames of unknown function. One promoter is associated with degS, an inner membrane protease. Mutants of the in vivo-induced loci were tested in competition with the wild type in mouse peritonitis. Of the mutants tested, only CFT073 degS was found to be attenuated in peritoneal and in urinary tract infection, with virulence restored by complementation. CFT073 degS shows growth similar to that of the wild type at 37°C but is impaired at 43°C or in 3% ethanol LB broth at 37°C. Compared to the wild type, the mutant shows similar serum survival, motility, hemolysis, erythrocyte agglutination, and tolerance to oxidative stress. It also has the same lipopolysaccharide appearance on a silver-stained gel. The basis for the virulence attenuation is unclear, but because DegS is needed for σE activity, our findings implicate σE and its regulon in E. coli extraintestinal pathogenesis.


Open Biology ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. 170040 ◽  
Author(s):  
Qianqian Di ◽  
Qing Lin ◽  
Zhibin Huang ◽  
Yali Chi ◽  
Xiaohui Chen ◽  
...  

Neutrophils play important roles in innate immunity and are mainly dependent on various enzyme-containing granules to kill engulfed microorganisms. Zebrafish nephrosin ( npsn ) is specifically expressed in neutrophils; however, its function is largely unknown. Here, we generated an npsn mutant ( npsn smu5 ) via CRISPR/Cas9 to investigate the in vivo function of Npsn. The overall development and number of neutrophils remained unchanged in npsn -deficient mutants, whereas neutrophil antibacterial function was defective. Upon infection with Escherichia coli , the npsn smu5 mutants exhibited a lower survival rate and more severe bacterial burden, as well as augmented inflammatory response to challenge with infection when compared with wild-type embryos, whereas npsn -overexpressing zebrafish exhibited enhanced host defence against E. coli infection. These findings demonstrated that zebrafish Npsn promotes host defence against bacterial infection. Furthermore, our findings suggested that npsn -deficient and -overexpressing zebrafish might serve as effective models of in vivo innate immunity.


2006 ◽  
Vol 188 (4) ◽  
pp. 1279-1285 ◽  
Author(s):  
Deborah M. Hinton ◽  
Srilatha Vuthoori ◽  
Rebecca Mulamba

ABSTRACT The N-terminal region (region 1.1) of σ70, the primary σ subunit of Escherichia coli RNA polymerase, is a negatively charged domain that affects the DNA binding properties of σ70 regions 2 and 4. Region 1.1 prevents the interaction of free σ70 with DNA and modulates the formation of stable (open) polymerase/promoter complexes at certain promoters. The bacteriophage T4 AsiA protein is an inhibitor of σ70-dependent transcription from promoters that require an interaction between σ70 region 4 and the −35 DNA element and is the coactivator of transcription at T4 MotA-dependent promoters. Like AsiA, the T4 activator MotA also interacts with σ70 region 4. We have investigated the effect of region 1.1 on AsiA inhibition and MotA/AsiA activation. We show that σ70 region 1.1 is not required for MotA/AsiA activation at the T4 middle promoter P uvsX . However, the rate of AsiA inhibition and of MotA/AsiA activation of polymerase is significantly increased when region 1.1 is missing. We also find that RNA polymerase reconstituted with σ70 that lacks region 1.1 is less stable than polymerase with full-length σ70. Our previous work has demonstrated that the AsiA-inhibited polymerase is formed when AsiA binds to region 4 of free σ70 and then the AsiA/σ70 complex binds to core. Our results suggest that in the absence of region 1.1, there is a shift in the dynamic equilibrium between polymerase holoenzyme and free σ70 plus core, yielding more free σ70 at any given time. Thus, the rate of AsiA inhibition and AsiA/MotA activation increases when RNA polymerase lacks region 1.1 because of the increased availability of free σ70. Previous work has argued both for and against a direct interaction between regions 1.1 and 4. Using an E. coli two-hybrid assay, we do not detect an interaction between these regions. This result supports the idea that the ability of region 1.1 to prevent DNA binding by free σ70 arises through an indirect effect.


2001 ◽  
Vol 183 (7) ◽  
pp. 2259-2264 ◽  
Author(s):  
Yan Wei ◽  
Amy C. Vollmer ◽  
Robert A. LaRossa

ABSTRACT Mitomycin C (MMC), a DNA-damaging agent, is a potent inducer of the bacterial SOS response; surprisingly, it has not been used to select resistant mutants from wild-type Escherichia coli. MMC resistance is caused by the presence of any of four distinctE. coli genes (mdfA, gyrl, rob, andsdiA) on high-copy-number vectors. mdfAencodes a membrane efflux pump whose overexpression results in broad-spectrum chemical resistance. The gyrI (also called sbmC) gene product inhibits DNA gyrase activity in vitro, while the rob protein appears to function in transcriptional activation of efflux pumps. SdiA is a transcriptional activator of ftsQAZ genes involved in cell division.


2000 ◽  
Vol 182 (23) ◽  
pp. 6630-6637 ◽  
Author(s):  
Chin Li ◽  
Yi Ping Tao ◽  
Lee D. Simon

ABSTRACT Transcription of the clpP-clpX operon ofEscherichia coli leads to the production of two different sizes of transcripts. In log phase, the level of the longer transcript is higher than the level of the shorter transcript. Soon after the onset of carbon starvation, the level of the shorter transcript increases significantly, and the level of the longer transcript decreases. The longer transcript consists of the entireclpP-clpX operon, whereas the shorter transcript contains the entire clpP gene but none of the clpXcoding sequence. The RpoH protein is required for the increase in the level of the shorter transcript during carbon starvation. Primer extension experiments suggest that there is increased usage of the ς32-dependent promoter of the clpP-clpXoperon within 15 min after the start of carbon starvation. Expression of the clpP-clpX operon from the promoters upstream of theclpP gene decreases to a very low level by 20 min after the onset of carbon starvation. Various pieces of evidence suggest, though they do not conclusively prove, that production of the shorter transcript may involve premature termination of the longer transcript. The half-life of the shorter transcript is much less than that of the longer transcript during carbon starvation. E. coli rpoBmutations that affect transcription termination efficiency alter the ratio of the shorter clpP-clpX transcript to the longer transcript. The E. coli rpoB3595 mutant, with an RNA polymerase that terminates transcription with lower efficiency than the wild type, accumulates a lower percentage of the shorter transcript during carbon starvation than does the isogenic wild-type strain. In contrast, the rpoB8 mutant, with an RNA polymerase that terminates transcription with higher efficiency than the wild type, produces a higher percentage of the shorter clpP-clpXtranscript when E. coli is in log phase. These and other data are consistent with the hypothesis that the shorter transcript results from premature transcription termination during production of the longer transcript.


2004 ◽  
Vol 186 (5) ◽  
pp. 1304-1310 ◽  
Author(s):  
Martha Torres ◽  
Joan-Miquel Balada ◽  
Malcolm Zellars ◽  
Craig Squires ◽  
Catherine L. Squires

ABSTRACT Similarities between lambda and rRNA transcription antitermination have led to suggestions that they involve the same Nus factors. However, direct in vivo confirmation that rRNA antitermination requires all of the lambda Nus factors is lacking. We have therefore analyzed the in vivo role of NusB and NusG in rRNA transcription antitermination and have established that both are essential for it. We used a plasmid test system in which reporter gene mRNA was measured to monitor rRNA antiterminator-dependent bypass of a Rho-dependent terminator. A comparison of terminator read-through in a wild-type Escherichia coli strain and that in a nusB::IS10 mutant strain determined the requirement for NusB. In the absence of NusB, antiterminator-dependent terminator read-through was not detected, showing that NusB is necessary for rRNA transcription antitermination. The requirement for NusG was determined by comparing rRNA antiterminator-dependent terminator read-through in a strain overexpressing NusG with that in a strain depleted of NusG. In NusG-depleted cells, termination levels were unchanged in the presence or absence of the antiterminator, demonstrating that NusG, like NusB, is necessary for rRNA transcription antitermination. These results imply that NusB and NusG are likely to be part of an RNA-protein complex formed with RNA polymerase during transcription of the rRNA antiterminator sequences that is required for rRNA antiterminator-dependent terminator read-through.


2018 ◽  
Vol 200 (12) ◽  
Author(s):  
Chunyou Mao ◽  
Yan Zhu ◽  
Pei Lu ◽  
Lipeng Feng ◽  
Shiyun Chen ◽  
...  

ABSTRACT The ω subunit is the smallest subunit of bacterial RNA polymerase (RNAP). Although homologs of ω are essential in both eukaryotes and archaea, this subunit has been known to be dispensable for RNAP in Escherichia coli and in other bacteria. In this study, we characterized an indispensable role of the ω subunit in Mycobacterium tuberculosis . Unlike the well-studied E. coli RNAP, the M. tuberculosis RNAP core enzyme cannot be functionally assembled in the absence of the ω subunit. Importantly, substitution of M. tuberculosis ω with ω subunits from E. coli or Thermus thermophilus cannot restore the assembly of M. tuberculosis RNAP. Furthermore, by replacing different regions in M. tuberculosis ω with the corresponding regions from E. coli ω, we found a nonconserved loop region in M. tuberculosis ω essential for its function in RNAP assembly. From RNAP structures, we noticed that the location of the C-terminal region of the β′ subunit (β′CTD) in M. tuberculosis RNAP but not in E. coli or T. thermophilus RNAP is close to the ω loop region. Deletion of this β′CTD in M. tuberculosis RNAP destabilized the binding of M. tuberculosis ω on RNAP and compromised M. tuberculosis core assembly, suggesting that these two regions may function together to play a role in ω-dependent RNAP assembly in M. tuberculosis . Sequence alignment of the ω loop and the β′CTD regions suggests that the essential role of ω is probably restricted to mycobacteria. Together, our study characterized an essential role of M. tuberculosis ω and highlighted the importance of the ω loop region in M. tuberculosis RNAP assembly. IMPORTANCE DNA-dependent RNA polymerase (RNAP), which consists of a multisubunit core enzyme (α 2 ββ′ω) and a dissociable σ subunit, is the only enzyme in charge of transcription in bacteria. As the smallest subunit, the roles of ω remain the least well studied. In Escherichia coli and some other bacteria, the ω subunit is known to be nonessential for RNAP. In this study, we revealed an essential role of the ω subunit for RNAP assembly in the human pathogen Mycobacterium tuberculosis , and a mycobacterium-specific ω loop that plays a role in this function was also characterized. Our study provides fresh insights for further characterizing the roles of bacterial ω subunit.


2007 ◽  
Vol 190 (3) ◽  
pp. 807-814 ◽  
Author(s):  
Amy E. Perkins ◽  
Wayne L. Nicholson

ABSTRACT RNA polymerase is a central macromolecular machine controlling the flow of information from genotype to phenotype, and insights into global transcriptional regulation can be gained by studying mutational perturbations in the enzyme. Mutations in the RNA polymerase β subunit gene rpoB causing resistance to rifampin (Rifr) in Bacillus subtilis were previously shown to lead to alterations in the expression of a number of global phenotypes known to be under transcriptional control, such as growth, competence for transformation, sporulation, and germination (H. Maughan, B. Galeano, and W. L. Nicholson, J. Bacteriol. 186:2481-2486, 2004). To better understand the global effects of rpoB mutations on metabolism, wild-type and 11 distinct congenic Rifr mutant strains of B. subtilis were tested for utilization of 95 substrates by use of Biolog GP2 MicroPlates. A number of alterations of substrate utilization patterns were observed in the Rifr mutants, including the utilization of novel substrates previously unknown in B. subtilis, such as gentiobiose, β-methyl-d-glucoside, and d-psicose. The results indicate that combining global metabolic profiling with mutations in RNA polymerase provides a system-wide approach for uncovering previously unknown metabolic capabilities and further understanding global transcriptional control circuitry in B. subtilis.


Sign in / Sign up

Export Citation Format

Share Document