scholarly journals Dps and DpsL Mediate SurvivalIn VitroandIn Vivoduring the Prolonged Oxidative Stress Response in Bacteroides fragilis

2015 ◽  
Vol 197 (20) ◽  
pp. 3329-3338 ◽  
Author(s):  
Michael I. Betteken ◽  
Edson R. Rocha ◽  
C. Jeffrey Smith

ABSTRACTBacteroides fragilisis a Gram-negative anaerobe and member of the human intestinal tract microbiome, where it plays many beneficial roles. However, translocation of the organism to the peritoneal cavity can lead to peritonitis, intra-abdominal abscess formation, bacteremia, and sepsis. During translocation,B. fragilisis exposed to increased oxidative stress from the oxygenated tissues of the peritoneal cavity and the immune response. In order to survive,B. fragilismounts a robust oxidative stress response consisting of an acute and a prolonged oxidative stress (POST) response. This report demonstrates that the ability to induce high levels of resistance totert-butyl hydroperoxide (tBOOH) after extended exposure to air can be linked to the POST response. Disk diffusion assays comparing the wild type to a Δdpsmutant and a ΔdpsΔbfrmutant showed greater sensitivity of the mutants to tBOOH after exposure to air, suggesting that Dps and DpsL play a role in the resistance phenotype. Complementation studies withdpsorbfr(encoding DpsL) restored tBOOH resistance, suggesting a role for both of these ferritin-family proteins in the response. Additionally, cultures treated with the iron chelator dipyridyl were not killed by tBOOH, indicating Dps and DpsL function by sequestering iron to prevent cellular damage. Anin vivoanimal model showed that the ΔdpsΔbfrmutant was attenuated, indicating that management of iron is important for survival within the abscess. Together, these data demonstrate a role for Dps and DpsL in the POST response which mediates survivalin vitroandin vivo.IMPORTANCEB. fragilisis the anaerobe most frequently isolated from extraintestinal opportunistic infections, but there is a paucity of information about the factors that allow this organism to survive outside its normal intestinal environment. This report demonstrates that the iron storage proteins Dps and DpsL protect against oxidative stress and that they contribute to survival bothin vitroandin vivo. Additionally, this work demonstrates an important role for the POST response inB. fragilissurvival and provides insight into the complex regulation of this response.

2016 ◽  
Vol 84 (11) ◽  
pp. 3141-3151 ◽  
Author(s):  
Adrienne C. Showman ◽  
George Aranjuez ◽  
Philip P. Adams ◽  
Mollie W. Jewett

A greater understanding of the molecular mechanisms that Borrelia burgdorferi uses to survive during mammalian infection is critical for the development of novel diagnostic and therapeutic tools to improve the clinical management of Lyme disease. By use of an in vivo expression technology (IVET)-based approach to identify B. burgdorferi genes expressed in vivo , we discovered the bb0318 gene, which is thought to encode the ATPase component of a putative riboflavin ABC transport system. Riboflavin is a critical metabolite enabling all organisms to maintain redox homeostasis. B. burgdorferi appears to lack the metabolic capacity for de novo synthesis of riboflavin and so likely relies on scavenging riboflavin from the host environment. In this study, we sought to investigate the role of bb0318 in B. burgdorferi pathogenesis. No in vitro growth defect was observed for the Δ bb0318 clone. However, the mutant spirochetes displayed reduced levels of survival when exposed to exogenous hydrogen peroxide or murine macrophages. Spirochetes lacking bb0318 were found to have a 100-fold-higher 50% infectious dose than spirochetes containing bb0318 . In addition, at a high inoculum dose, bb0318 was found to be important for effective spirochete dissemination to deep tissues for as long as 3 weeks postinoculation and to be critical for B. burgdorferi infection of mouse hearts. Together, these data implicate bb0318 in the oxidative stress response of B. burgdorferi and indicate the contribution of bb0318 to B. burgdorferi mammalian infectivity.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
M. Marin-Kuan ◽  
V. Ehrlich ◽  
T. Delatour ◽  
C. Cavin ◽  
B. Schilter

Thein vitroandin vivoevidence compatible with a role for oxidative stress in OTA carcinogenicity has been collected and described. Several potential oxido-reduction mechanisms have been identified in the past. More recently, the possibility of a reduction of cellular antioxidant defense has been raised as an indirect source of oxidative stress. Consequences resulting from the production of oxidative stress are observed at different levels. First, OTA exposure has been associated with increased levels of oxidative DNA, lipid, and protein damage. Second, various biological processes known to be mobilized under oxidative stress were shown to be altered by OTA. These effects have been observed in bothin vitroandin vivotest systems.In vivo, active doses were often within doses documented to induce renal tumors in rats. In conclusion, the evidence for the induction of an oxidative stress response resulting from OTA exposure can be considered strong. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Altogether, the data reviewed above support the application of a threshold-based approach to establish safe level of dietary human exposure to OTA.


2012 ◽  
Vol 80 (10) ◽  
pp. 3650-3659 ◽  
Author(s):  
Ruchi Pandey ◽  
G. Marcela Rodriguez

ABSTRACTIron is an essential, elusive, and potentially toxic nutrient for most pathogens, includingMycobacterium tuberculosis. Due to the poor solubility of ferric iron under aerobic conditions, free iron is not found in the host.M. tuberculosisrequires specialized iron acquisition systems to replicate and cause disease. It also depends on a strict control of iron metabolism and intracellular iron levels to prevent iron-mediated toxicity. Under conditions of iron sufficiency,M. tuberculosisrepresses iron acquisition and induces iron storage, suggesting an important role for iron storage proteins in iron homeostasis.M. tuberculosissynthesizes two iron storage proteins, a ferritin (BfrB) and a bacterioferritin (BfrA). The individual contributions of these proteins to the adaptive response ofM. tuberculosisto changes in iron availability are not clear. By generating individual knockout strains ofbfrAandbfrB, the contribution of each one of these proteins to the maintenance of iron homeostasis was determined. The effect of altered iron homeostasis, resulting from impaired iron storage, on the resistance ofM. tuberculosistoin vitroandin vivostresses was examined. The results show that ferritin is required to maintain iron homeostasis, whereas bacterioferritin seems to be dispensable for this function.M. tuberculosislacking ferritin suffers from iron-mediated toxicity, is unable to persist in mice, and, most importantly, is highly susceptible to killing by antibiotics, showing that endogenous oxidative stress can enhance the antibiotic killing of this important pathogen. These results are relevant for the design of new therapeutic strategies againstM. tuberculosis.


2016 ◽  
Vol 39 (5) ◽  
pp. 2044-2054 ◽  
Author(s):  
Ban Liu ◽  
Chao-Peng Li ◽  
Wen-Qi Wang ◽  
Shu-Guang Song ◽  
Xiu-Ming Liu

Background/Aims: Advanced glycation end products (AGEs) could elicit oxidative stress, trigger and aggravate endothelium damage in several ischemic retinopathies including diabetic retinopathy (DR). The leaves of Eucommia ulmoides O., also referred to as Tu-chung or Du-zhong, have been used for the treatment of hypertension and diabetes, showing great antioxidant activity and anti-glycation activity. Lignans is one of the main bioactive components of Eucommia ulmoides. This study mainly investigated the effect of lignans treatment on AGEs-induced endothelium damage. Methods: MTT assay, Hoechst staining, and calcein-AM/ propidium iodide (PI) staining was conducted to determine the effect of lignans treatment on endothelial cell function in vitro. Retinal trypsin digestion, Evans blue assay, isolectin staining, and western blots were conducted to determine the effect of lignans treatment on retinal microvascular function in vivo. Western blot, protein immunoprecipitation (IP), MTT assays, and enzyme activity assay was conducted to detect the effect of ligans treatment on oxidative stress response. Results: Lignans protected retinal endothelial cell against AGEs-induced injury in vitro and diabetes-induced vascular dysfunction in vivo. Lignans treatment could regulate oxidative stress response in retinal endothelial cell line, retina, and liver. Moreover, we showed that NRF2/HO-1 signaling was critical for lignans-mediated oxidative stress regulation. Conclusion: Lignans treatment could protect against endothelial dysfunction in vivo and in vitro via regulating Nrf2/HO-1 signaling. Lignans might be developed as a promising drug for the treatment of diabetes-induced microvascular dysfunction.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009282
Author(s):  
Petra Horvatek ◽  
Andrea Salzer ◽  
Andrew Magdy Fekry Hanna ◽  
Fabio Lino Gratani ◽  
Daniela Keinhörster ◽  
...  

The stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog, RelSau upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ upon cell wall stress. We used RNA-Seq to compare the global effects in response to induction of the synthetase of rel-Syn (coding for the enzymatic region of RelSau) or relQ without the need to apply additional stress conditions. Induction of rel-Syn resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than Rel-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. (pp)pGpp induction resulted in the downregulation of many genes involved in protein and RNA/DNA metabolism. Many of the (pp)pGpp up-regulated genes are part of the GTP sensitive CodY regulon and thus likely regulated through lowering of the GTP pool. New CodY independent transcriptional changes were detected including genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., perR katA, sodA) and the psmα1–4 and psmß1-2 operons coding for cytotoxic, phenol soluble modulins (PSMs). Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis.


Author(s):  
Leila dos Santos Moura ◽  
Vinícius Santana Nunes ◽  
Antoniel A. S. Gomes ◽  
Ana Caroline de Castro Nascimento Sousa ◽  
Marcos R. M. Fontes ◽  
...  

Trypanosoma cruzi faces a variety of environmental scenarios during its life cycle, which include changes in the redox environment that requires a fine regulation of a complex antioxidant arsenal of enzymes. Reversible posttranslational modifications, as lysine acetylation, are a fast and economical way for cells to react to environmental conditions. Recently, we found that the main antioxidant enzymes, including the mitochondrial superoxide dismutase A (TcSODA) are acetylated in T. cruzi, suggesting that protein acetylation could participate in the oxidative stress response in T. cruzi. Therefore, we investigated whether mitochondrial lysine deacetylase TcSir2rp3 was involved in the activity control of TcSODA. We observed an increased resistance to hydrogen peroxide and menadione in parasites overexpressing TcSir2rp3. Increased resistance was also found for benznidazole and nifurtimox, known to induce reactive oxidative and nitrosactive species in the parasite, associated to that a reduction in the ROS levels was observed. To better understand the way TcSir2rp3 could contributes to oxidative stress response, we analyzed the expression of TcSODA in the TcSir2rp3 overexpressing parasites and did not detect any increase in protein levels of this enzyme. However, we found that these parasites presented higher levels of superoxide dismutase activity, and also that TcSir2rp3 and TcSODA interacts in vivo. Knowing that TcSODA is acetylated at lysine residues K44 and K97, and that K97 is located at a similar region in the protein structure as K68 in human manganese superoxide dismutase (MnSOD), responsible for regulating MnSOD activity, we generated mutated versions of TcSODA at K44 and K97 and found that replacing K97 by glutamine, which mimics an acetylated lysine, negatively affects the enzyme activity in vitro. By using molecular dynamics approaches, we revealed that acetylation of K97 induces specific conformational changes in TcSODA with respect to hydrogen-bonding pattern to neighbor residues, suggesting a key participation of this residue to modulate the affinity to O2−. Taken together, our results showed for the first time the involvement of lysine acetylation in the maintenance of homeostatic redox state in trypanosomatids, contributing to the understanding of mechanisms used by T. cruzi to progress during the infection.


2018 ◽  
Vol 84 (23) ◽  
Author(s):  
Ashutosh Kumar Rai ◽  
Sudhir Singh ◽  
Sushil Kumar Dwivedi ◽  
Amit Srivastava ◽  
Parul Pandey ◽  
...  

ABSTRACTThe genome ofAzospirillum brasilenseencodes five RpoH sigma factors: two OxyR transcription regulators and three catalases. The aim of this study was to understand the role they play during oxidative stress and their regulatory interconnection. Out of the 5 paralogs of RpoH present inA. brasilense, inactivation of onlyrpoH1rendersA. brasilenseheat sensitive. While transcript levels ofrpoH1were elevated by heat stress, those ofrpoH3andrpoH5were upregulated by H2O2. Catalase activity was upregulated inA. brasilenseand itsrpoH::kmmutants in response to H2O2except in the case of therpoH5::kmmutant, suggesting a role for RpoH5 in regulating inducible catalase. Transcriptional analysis of thekatN,katAI, andkatAII genes revealed that the expression ofkatNandkatAII was severely compromised in therpoH3::kmandrpoH5::kmmutants, respectively. Regulation ofkatNandkatAII by RpoH3 and RpoH5, respectively, was further confirmed in anEscherichia colitwo-plasmid system. Regulation ofkatAII by OxyR2 was evident by a drastic reduction in growth, KatAII activity, andkatAII::lacZexpression in anoxyR2::kmmutant. This study reports the involvement of RpoH3 and RpoH5 sigma factors in regulating oxidative stress response in alphaproteobacteria. We also report the regulation of an inducible catalase by a cascade of alternative sigma factors and an OxyR. Out of the three catalases inA. brasilense, those corresponding tokatNandkatAII are regulated by RpoH3 and RpoH5, respectively. The expression ofkatAII is regulated by a cascade of RpoE1→RpoH5 and OxyR2.IMPORTANCEIn silicoanalysis of theA. brasilensegenome showed the presence of multiple paralogs of genes involved in oxidative stress response, which included 2 OxyR transcription regulators and 3 catalases. So far,Deinococcus radioduransandVibrio choleraeare known to harbor two paralogs of OxyR, andSinorhizobium melilotiharbors three catalases. We do not yet know how the expression of multiple catalases is regulated in any bacterium. Here we show the role of multiple RpoH sigma factors and OxyR in regulating the expression of multiple catalases inA. brasilenseSp7. Our work gives a glimpse of systems biology ofA. brasilenseused for responding to oxidative stress.


2019 ◽  
Vol 20 (22) ◽  
pp. 5550 ◽  
Author(s):  
Carolin Sterk ◽  
Lauren Gräber ◽  
Hans-Peter Schmitz ◽  
Jürgen J. Heinisch

The small GTPase Rho5 of Saccharomyces cerevisiae is required for proper regulation of different signaling pathways, which includes the response to cell wall, osmotic, nutrient, and oxidative stress. We here show that proper in vivo function and intracellular distribution of Rho5 depends on its hypervariable region at the carboxyterminal end, which includes the CAAX box for lipid modification, a preceding polybasic region (PBR) carrying a serine residue, and a 98 amino acid–specific insertion only present in Rho5 of S. cerevisiae but not in its human homolog Rac1. Results from trapping GFP-Rho5 variants to the mitochondrial surface suggest that the GTPase needs to be activated at the plasma membrane prior to its translocation to mitochondria in order to fulfil its role in oxidative stress response. These findings are supported by heterologous expression of a codon-optimized human RAC1 gene, which can only complement a yeast rho5 deletion in a chimeric fusion with RHO5 sequences that restore the correct spatiotemporal distribution of the encoded protein.


Sign in / Sign up

Export Citation Format

Share Document