Oxidative stress response of rat testis to model prooxidants in vitro and its modulation

2002 ◽  
Vol 16 (6) ◽  
pp. 675-682 ◽  
Author(s):  
T Rajesh Kumar ◽  
Muralidhara
2017 ◽  
Author(s):  
Manbeena Chawla ◽  
Saurabh Mishra ◽  
Pankti Parikh ◽  
Mansi Mehta ◽  
Prashant Shukla ◽  
...  

AbstractOxidative stress response in bacteria is generally mediated through coordination between the regulators of oxidant-remediation systems (e.g.OxyR, SoxR) and nucleoid condensation (e.g.Dps, Fis). However, these genetic factors are either absent or rendered nonfunctional in the human pathogenMycobacterium tuberculosis(Mtb). Therefore, howMtborganizes genome architecture and regulates gene expression to counterbalance oxidative imbalance during infection is not known. Here, we report that an intracellular redox-sensor, WhiB4, dynamically links genome condensation and oxidative stress response inMtb. Disruption of WhiB4 affects the expression of genes involved in maintaining redox homeostasis, central carbon metabolism (CCM), respiration, cell wall biogenesis, DNA repair and protein quality control under oxidative stress. Notably, disulfide-linked oligomerization of WhiB4 in response to oxidative stress activates the protein’s ability to condense DNAin vitroandin vivo. Further, overexpression of WhiB4 led to hypercondensation of nucleoids, redox imbalance and increased susceptibility to oxidative stress, whereas WhiB4 disruption reversed this effect. In accordance with the findingsin vitro, ChIP-Seq data demonstrated non-specific binding of WhiB4 to GC-rich regions of theMtbgenome. Lastly, data indicate that WhiB4 deletion affected the expression of only a fraction of genes preferentially bound by the protein, suggesting its indirect effect on gene expression. We propose that WhiB4 is a novel redox-dependent nucleoid condensing protein that structurally couplesMtb’sresponse to oxidative stress with genome organization and transcription.Significance StatementMycobacterium tuberculosis (Mtb)needs to adapt in response to oxidative stress encountered inside human phagocytes. In other bacteria, condensation state of nucleoids modulates gene expression to coordinate oxidative stress response. However, this relation remains elusive inMtb. We performed molecular dissection of a mechanism controlled by an intracellular redox sensor, WhiB4, in organizing both chromosomal structure and selective expression of adaptive traits to counter oxidative stress inMtb. Using high-resolution sequencing, transcriptomics, imaging, and redox biosensor, we describe how WhiB4 modulates nucleoid condensation, global gene expression, and redox-homeostasis. WhiB4 over-expression hypercondensed nucleoids and perturbed redox homeostasis whereas WhiB4 disruption had an opposite effect. Our study discovered an empirical role for WhiB4 in integrating redox signals with nucleoid condensation inMtb.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Huang ◽  
Ruilin Zhang ◽  
Shangwen Wang ◽  
Dongxian Zhang ◽  
Chi-Kwan Leung ◽  
...  

Synergistic impairment of the blood-brain barrier (BBB) induced by methamphetamine (METH) and HIV-Tat protein increases the risk of HIV-associated neurocognitive disorders (HAND) in HIV-positive METH abusers. Studies have shown that oxidative stress plays a vital role in METH- and HIV-Tat-induced damage to the BBB but have not clarified the mechanism. This study uses the human brain microvascular endothelial cell line hCMEC/D3 and tree shrews to investigate whether the transient receptor potential melastatin 2 (TRPM2) channel, a cellular effector of the oxidative stress, might regulate synergistic damage to the BBB caused by METH and HIV-Tat. We showed that METH and HIV-Tat damaged the BBB in vitro, producing abnormal cell morphology, increased apoptosis, reduced protein expression of the tight junctions (TJ) including Junctional adhesion molecule A (JAMA) and Occludin, and a junctional associated protein Zonula occludens 1 (ZO1), and increased the flux of sodium fluorescein (NaF) across the hCMEC/D3 cells monolayer. METH and HIV-Tat co-induced the oxidative stress response, reducing catalase (CAT), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) activity, as well as increased reactive oxygen species (ROS) and malonaldehyde (MDA) level. Pretreatment with n-acetylcysteine amide (NACA) alleviated the oxidative stress response and BBB damage characterized by improving cell morphology, viability, apoptosis levels, TJ protein expression levels, and NaF flux. METH and HIV-Tat co-induced the activation and high protein expression of the TRPM2 channel, however, early intervention using 8-Bromoadenosine-5′-O-diphosphoribose (8-Br-ADPR), an inhibitor of TPRM2 channel, or TRPM2 gene knockdown attenuated the BBB damage. Oxidative stress inhibition reduced the activation and high protein expression of the TRPM2 channel in the in vitro model, which in turn reduced the oxidative stress response. Further, 8-Br-ADPR attenuated the effects of METH and HIV-Tat on the BBB in tree shrews—namely, down-regulated TJ protein expression and increased BBB permeability to Evans blue (EB) and NaF. In summary, the TRPM2 channel can regulate METH- and HIV-Tat-induced oxidative stress and BBB injury, giving the channel potential for developing drug interventions to reduce BBB injury and neuropsychiatric symptoms in HIV-infected METH abusers.


2015 ◽  
Vol 197 (20) ◽  
pp. 3329-3338 ◽  
Author(s):  
Michael I. Betteken ◽  
Edson R. Rocha ◽  
C. Jeffrey Smith

ABSTRACTBacteroides fragilisis a Gram-negative anaerobe and member of the human intestinal tract microbiome, where it plays many beneficial roles. However, translocation of the organism to the peritoneal cavity can lead to peritonitis, intra-abdominal abscess formation, bacteremia, and sepsis. During translocation,B. fragilisis exposed to increased oxidative stress from the oxygenated tissues of the peritoneal cavity and the immune response. In order to survive,B. fragilismounts a robust oxidative stress response consisting of an acute and a prolonged oxidative stress (POST) response. This report demonstrates that the ability to induce high levels of resistance totert-butyl hydroperoxide (tBOOH) after extended exposure to air can be linked to the POST response. Disk diffusion assays comparing the wild type to a Δdpsmutant and a ΔdpsΔbfrmutant showed greater sensitivity of the mutants to tBOOH after exposure to air, suggesting that Dps and DpsL play a role in the resistance phenotype. Complementation studies withdpsorbfr(encoding DpsL) restored tBOOH resistance, suggesting a role for both of these ferritin-family proteins in the response. Additionally, cultures treated with the iron chelator dipyridyl were not killed by tBOOH, indicating Dps and DpsL function by sequestering iron to prevent cellular damage. Anin vivoanimal model showed that the ΔdpsΔbfrmutant was attenuated, indicating that management of iron is important for survival within the abscess. Together, these data demonstrate a role for Dps and DpsL in the POST response which mediates survivalin vitroandin vivo.IMPORTANCEB. fragilisis the anaerobe most frequently isolated from extraintestinal opportunistic infections, but there is a paucity of information about the factors that allow this organism to survive outside its normal intestinal environment. This report demonstrates that the iron storage proteins Dps and DpsL protect against oxidative stress and that they contribute to survival bothin vitroandin vivo. Additionally, this work demonstrates an important role for the POST response inB. fragilissurvival and provides insight into the complex regulation of this response.


2019 ◽  
Vol 20 (24) ◽  
pp. 6143 ◽  
Author(s):  
Eileen Jackson ◽  
Marc Heidl ◽  
Dominik Imfeld ◽  
Laurent Meeus ◽  
Rolf Schuetz ◽  
...  

One of the first lines of cutaneous defense against photoaging is (a) the synthesis of melanin and (b) the initiation of an oxidative stress response to protect skin against the harmful effects of solar radiation. Safe and selective means to stimulate epidermal pigmentation associated with oxidative stress defense are; however, scarce. Activation of the melanocortin-1 receptor (MC1R) on epidermal melanocytes represents a key step in cutaneous pigmentation initiation and, additionally, it regulates cellular defense mechanisms like oxidative stress and DNA-repair. Thus, making the activation of MC1R an attractive strategy for modulating skin pigmentation and oxidative stress. In this context, we designed and synthesized pentapeptides that act as MC1R agonists. These peptides bound, with high potency, to MC1R and activated cAMP synthesis in CHO cells expressing human MC1R. Using one lead pentapeptide, we could show that this activation of MC1R was specific as testing the activation of other G-protein coupled receptors, including the MC-receptor family, was negative. In vitro efficacy on mouse melanoma cells showed similar potency as for the synthetic MC1R agonist alpha-melanocyte stimulating hormone (NDP-alpha-MSH). Moreover, we could reproduce this activity in human skin tissue culture. The lead pentapeptide was able to induce ex-vivo protein expression of key melanogenesis markers melanocyte inducing transcription factor (MITF), tyrosinase (TYR), and tyrosinase-related protein 1 (TYRP-1). Concerning oxidative stress response, we found that the pentapeptide enhanced the activation of Nrf2 after UVA-irradiation. Our results make this pentapeptide an ideal candidate as a skin pigmentation enhancer that mimics alpha-MSH and may also have anti-photoaging effects on the skin.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
M. Marin-Kuan ◽  
V. Ehrlich ◽  
T. Delatour ◽  
C. Cavin ◽  
B. Schilter

Thein vitroandin vivoevidence compatible with a role for oxidative stress in OTA carcinogenicity has been collected and described. Several potential oxido-reduction mechanisms have been identified in the past. More recently, the possibility of a reduction of cellular antioxidant defense has been raised as an indirect source of oxidative stress. Consequences resulting from the production of oxidative stress are observed at different levels. First, OTA exposure has been associated with increased levels of oxidative DNA, lipid, and protein damage. Second, various biological processes known to be mobilized under oxidative stress were shown to be altered by OTA. These effects have been observed in bothin vitroandin vivotest systems.In vivo, active doses were often within doses documented to induce renal tumors in rats. In conclusion, the evidence for the induction of an oxidative stress response resulting from OTA exposure can be considered strong. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Altogether, the data reviewed above support the application of a threshold-based approach to establish safe level of dietary human exposure to OTA.


2022 ◽  
Author(s):  
Karolina Plössl ◽  
Emily Webster ◽  
Christina Kiel ◽  
Felix Grassmann ◽  
Caroline Brandl ◽  
...  

Aim: To model a complex retinal disease such as age-related macular degeneration (AMD) in vitro, we aimed to combine genetic and environmental risk factors in a retinal pigment epithelium (RPE) cell culture model generated via induced pluripotent stem cells (iPSCs) from subjects with an extremely high and an extremely low genetic disease risk. As an external stimulus, we chose defined oxidative stress conditions. Methods: Patients were genotyped for known AMD-associated genetic variants and their individual genetic risk score (GRS) was calculated defining individual iPSC-RPE cell lines which reflect the extreme ends of the genetic risk for AMD. Sodium iodate (NaIO3, SI) was used to induce oxidative stress and cellular responses were followed by analyzing nuclear factor erythroid 2-related factor 2 (NRF2) pathway activation by mRNA and protein expression. Results: We present a collection of eight iPSC-RPE cell lines, with four each harboring an extreme low or an extreme high GRS for AMD. RPE identity was verified structurally and functionally. We found that 24 and 72 h of SI treatment induced a significant upregulation of NRF2 response genes HMOX1 and NQO1, without showing cytotoxic effects or negatively influencing RPE cell integrity. High- vs. low-risk cell lines revealed similar first line defenses in oxidative stress response mediated through the NRF2 pathway. Conclusion: Delineating the NRF2-mediated oxidative stress response was sought in iPSC-RPE cell lines with maximally divergent genetic AMD risk profiles. Under the specific stress conditions chosen, our data indicate that genetic predisposition to AMD may not exert a major influence on the NRF2 signaling pathway.


1998 ◽  
Vol 180 (18) ◽  
pp. 4856-4864 ◽  
Author(s):  
E. Pagán-Ramos ◽  
J. Song ◽  
M. McFalone ◽  
M. H. Mudd ◽  
V. Deretic

ABSTRACT Oxidative stress response in pathogenic mycobacteria is believed to be of significance for host-pathogen interactions at various stages of infection. It also plays a role in determining the intrinsic susceptibility to isoniazid in mycobacterial species. In this work, we characterized the oxyR-ahpC and furA-katG loci in the nontuberculous pathogen Mycobacterium marinum. In contrast to Mycobacterium smegmatis and likeMycobacterium tuberculosis and Mycobacterium leprae, M. marinum was shown to possess a closely linked and divergently oriented equivalents of the regulator of peroxide stress response oxyR and its subordinate geneahpC, encoding a homolog of alkyl hydroperoxide reductase. Purified mycobacterial OxyR was found to bind to theoxyR-ahpC promoter region from M. marinum and additional mycobacterial species. Mobility shift DNA binding analyses using OxyR binding sites from several mycobacteria and a panel of in vitro-generated mutants validated the proposed consensus mycobacterial recognition sequence. M. marinum AhpC levels detected by immunoblotting, were increased upon treatment with H2O2, in keeping with the presence of a functional OxyR and its binding site within the promoter region ofahpC. In contrast, OxyR did not bind to the sequences upstream of the katG structural gene, and katGexpression did not follow the pattern seen with ahpC. Instead, a new open reading frame encoding a homolog of the ferric uptake regulator Fur was identified immediately upstream ofkatG in M. marinum. The furA-katGlinkage and arrangement are ubiquitous in mycobacteria, suggesting the presence of additional regulators of oxidative stress response and potentially explaining the observed differences in ahpC andkatG expression. Collectively, these findings broaden our understanding of oxidative stress response in mycobacteria. They also suggest that M. marinum will be useful as a model system for studying the role of oxidative stress response in mycobacterial physiology, intracellular survival, and other host-pathogen interactions associated with mycobacterial diseases.


2016 ◽  
Vol 39 (5) ◽  
pp. 2044-2054 ◽  
Author(s):  
Ban Liu ◽  
Chao-Peng Li ◽  
Wen-Qi Wang ◽  
Shu-Guang Song ◽  
Xiu-Ming Liu

Background/Aims: Advanced glycation end products (AGEs) could elicit oxidative stress, trigger and aggravate endothelium damage in several ischemic retinopathies including diabetic retinopathy (DR). The leaves of Eucommia ulmoides O., also referred to as Tu-chung or Du-zhong, have been used for the treatment of hypertension and diabetes, showing great antioxidant activity and anti-glycation activity. Lignans is one of the main bioactive components of Eucommia ulmoides. This study mainly investigated the effect of lignans treatment on AGEs-induced endothelium damage. Methods: MTT assay, Hoechst staining, and calcein-AM/ propidium iodide (PI) staining was conducted to determine the effect of lignans treatment on endothelial cell function in vitro. Retinal trypsin digestion, Evans blue assay, isolectin staining, and western blots were conducted to determine the effect of lignans treatment on retinal microvascular function in vivo. Western blot, protein immunoprecipitation (IP), MTT assays, and enzyme activity assay was conducted to detect the effect of ligans treatment on oxidative stress response. Results: Lignans protected retinal endothelial cell against AGEs-induced injury in vitro and diabetes-induced vascular dysfunction in vivo. Lignans treatment could regulate oxidative stress response in retinal endothelial cell line, retina, and liver. Moreover, we showed that NRF2/HO-1 signaling was critical for lignans-mediated oxidative stress regulation. Conclusion: Lignans treatment could protect against endothelial dysfunction in vivo and in vitro via regulating Nrf2/HO-1 signaling. Lignans might be developed as a promising drug for the treatment of diabetes-induced microvascular dysfunction.


Sign in / Sign up

Export Citation Format

Share Document