scholarly journals Site-Directed Mutagenesis Identifies a Molecular Switch Involved in Copper Sensing by the Histidine Kinase CinS in Pseudomonas putida KT2440

2009 ◽  
Vol 191 (16) ◽  
pp. 5304-5311 ◽  
Author(s):  
Davide Quaranta ◽  
Megan M. McEvoy ◽  
Christopher Rensing

ABSTRACT In the presence of copper, Pseudomonas putida activates transcription of cinAQ via the two-component system CinS-CinR. The CinS-CinR TCS was responsive to 0.5 μM copper and was specifically activated only by copper and silver. Modeling studies of CinS identified a potential copper binding site containing H37 and H147. CinS mutants with H37R and H147R mutations had an almost 10-fold reduced copper-dependent induction of cinAQ compared to the wild type.

2021 ◽  
Vol 9 (8) ◽  
pp. 1558
Author(s):  
Tania Henriquez ◽  
Heinrich Jung

MxtR/ErdR (also called CrbS/CrbR) is a two-component system previously identified as important for the utilization of acetate in Vibrio cholerae and some Pseudomonas species. In addition, evidence has been found in Pseudomonas aeruginosa for a role in regulating the synthesis and expression, respectively, of virulence factors such as siderophores and RND transporters. In this context, we investigated the physiological role of the MxtR/ErdR system in the soil bacterium Pseudomonas putida KT2440. To that end, mxtR and erdR were individually deleted and the ability of the resulting mutants to metabolize different carbon sources was analyzed in comparison to wild type. We also assessed the impact of the deletions on siderophore production, expression of mexEF-oprN (RND transporter), and the biocontrol properties of the strain. Furthermore, the MxtR/ErdR-dependent expression of putative target genes and binding of ErdR to respective promoter regions were analyzed. Our results indicated that the MxtR/ErdR system is active and essential for acetate utilization in P. putida KT2440. Expression of scpC, pp_0354, and acsA-I was stimulated by acetate, while direct interactions of ErdR with the promoter regions of the genes scpC, pp_0354, and actP-I were demonstrated by an electromobility shift assay. Finally, our results suggested that MxtR/ErdR is neither involved in regulating siderophore production nor the expression of mexEF-oprN in P. putida KT2440 under the conditions tested.


2010 ◽  
Vol 78 (7) ◽  
pp. 2919-2926 ◽  
Author(s):  
Elizabeth A. Novak ◽  
HanJuan Shao ◽  
Carlo Amorin Daep ◽  
Donald R. Demuth

ABSTRACT Biofilm formation by the periodontal pathogen Aggregatibacter actinomycetemcomitans is dependent upon autoinducer-2 (AI-2)-mediated quorum sensing. However, the components that link the detection of the AI-2 signal to downstream gene expression have not been determined. One potential regulator is the QseBC two-component system, which is part of the AI-2-dependent response pathway that controls biofilm formation in Escherichia coli. Here we show that the expression of QseBC in A. actinomycetemcomitans is induced by AI-2 and that induction requires the AI-2 receptors, LsrB and/or RbsB. Additionally, inactivation of qseC resulted in reduced biofilm growth. Since the ability to grow in biofilms is essential for A. actinomycetemcomitans virulence, strains that were deficient in QseC or the AI-2 receptors were examined in an in vivo mouse model of periodontitis. The ΔqseC mutant induced significantly less alveolar bone resorption than the wild-type strain (P < 0.02). Bone loss in animals infected with the ΔqseC strain was similar to that in sham-infected animals. The ΔlsrB, ΔrbsB, and ΔlsrB ΔrbsB strains also induced significantly less alveolar bone resorption than the wild type (P < 0.03, P < 0.02, and P < 0.01, respectively). However, bone loss induced by a ΔluxS strain was indistinguishable from that induced by the wild type, suggesting that AI-2 produced by indigenous microflora in the murine oral cavity may complement the ΔluxS mutation. Together, these results suggest that the QseBC two-component system is part of the AI-2 regulon and may link the detection of AI-2 to the regulation of downstream cellular processes that are involved in biofilm formation and virulence of A. actinomycetemcomitans.


2005 ◽  
Vol 187 (3) ◽  
pp. 1105-1113 ◽  
Author(s):  
Sheng-Mei Jiang ◽  
Michael J. Cieslewicz ◽  
Dennis L. Kasper ◽  
Michael R. Wessels

ABSTRACT Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.


2000 ◽  
Vol 182 (4) ◽  
pp. 937-943 ◽  
Author(s):  
Gilberto Mosqueda ◽  
Juan-Luis Ramos

ABSTRACT Sequence analysis in Pseudomonas putida DOT-T1E revealed a second toluene efflux system for toluene metabolism encoded by the ttgDEF genes, which are adjacent to thetod genes. The ttgDEF genes were expressed in response to the presence of aromatic hydrocarbons such as toluene and styrene in the culture medium. To characterize the contribution of the TtgDEF system to toluene tolerance in P. putida, site-directed mutagenesis was used to knock out the gene in the wild-type DOT-T1E strain and in a mutant derivative, DOT-T1E-18. This mutant carried a Tn5 insertion in the ttgABCgene cluster, which encodes a toluene efflux pump that is synthesized constitutively. For site-directed mutagenesis, a cassette to knock out the ttgD gene and encoding resistance to tellurite was constructed in vitro and transferred to the corresponding host chromosome via the suicide plasmid pKNG101. Successful replacement of the wild-type sequences with the mutant cassette was confirmed by Southern hybridization. A single ttgD mutant, DOT-T1E-1, and a double mutant with knock outs in the ttgD andttgA genes, DOT-T1E-82, were obtained and characterized for toluene tolerance. This was assayed by the sudden addition of toluene (0.3% [vol/vol]) to the liquid culture medium of cells growing on Luria-Bertani (LB) medium (noninduced) or on LB medium with toluene supplied via the gas phase (induced). Induced cells of the singlettgD mutant were more sensitive to sudden toluene shock than were the wild-type cells; however, noninduced wild-type andttgD mutant cells were equally tolerant to toluene shock. Noninduced cells of the double DOT-T1E-82 mutant did not survive upon sudden toluene shock; however, they still remained viable upon sudden toluene shock if they had been previously induced. These results are discussed in the context of the use of multiple efflux pumps involved in solvent tolerance in P. putida DOT-T1E.


2018 ◽  
Author(s):  
Matthias Wehrmann ◽  
Charlotte Berthelot ◽  
Patrick Billard ◽  
Janosch Klebensberger

ABSTRACTIn Pseudomonas putida KT2440, two pyrroloquinoline quinone-dependent ethanol dehydrogenases (PQQ-EDHs) are responsible for the periplasmic oxidation of a broad variety of volatile organic compounds (VOCs). Depending on the availability of rare earth elements (REEs) of the lanthanide series (Ln3+), we have recently described that the transcription of the genes encoding the Ca2+-utilizing enzyme PedE and the Ln3+-utilizing enzyme PedH are inversely regulated. With adaptive evolution experiments, site-specific mutations, transcriptional reporter fusions, and complementation approaches, we herein demonstrate that the PedS2/PedR2 (PP_2671/PP_2672) two-component system (TCS) plays a central role in the observed REE-mediated switch of PQQ-EDHs in P. putida. We provide evidence that in the absence of lanthanum (La3+), the sensor histidine kinase PedS2 phosphorylates its cognate LuxR-type response regulator PedR2, which in turn not only activates pedE gene transcription but is also involved in repression of pedH. Our data further suggests that the presence of La3+ lowers kinase activity of PedS2, either by the direct binding of the metal ions to the periplasmic region of PedS2 or by an uncharacterized indirect interaction, leading to reduced levels of phosphorylated PedR2. Consequently, the fading pedE expression and concomitant alleviation of pedH repression causes – in conjunction with the transcriptional activation of the pedH gene by a yet unknown regulatory module – the Ln3+-dependent transition from PedE to PedH catalysed oxidation of alcoholic VOCs.IMPORTANCEThe function of lanthanides for methano- and methylotrophic bacteria is gaining increasing attention, while knowledge about the role of rare earth elements (REEs) in non-methylotrophic bacteria is still limited. The present study investigates the recently described differential expression of the two PQQ-EDHs of P. putida in response to lanthanides. We demonstrate that a specific TCS is crucial for their inverse regulation and provide evidence for a dual regulatory function of the LuxR-type response regulator involved. Thus, our study represents the first detailed characterization of the molecular mechanism underlying the REE switch of PQQ-EDHs in a non-methylotrophic bacterium and stimulates subsequent investigations for the identification of additional genes or phenotypic traits that might be co-regulated during REE-dependent niche adaptation.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1409
Author(s):  
Lili He ◽  
Feng Zhang ◽  
Xiaozhen Wu ◽  
Yanmei Hu ◽  
LiLi Dong ◽  
...  

The thickening of Zizania latifolia shoots, referred to as gall formation, depends on infection with the fungal endophyte Ustilago esculenta. The swollen and juicy shoots are a popular vegetable in Asia. A key role for cytokinin action in this process was postulated. Here, trans-zeatin stimulated swelling in fungi-infected Z. latifolia. A two-component system (TCS) linked cytokinin binding to receptors with transcriptional regulation in the nucleus and played important roles in diverse biological processes. We characterized 69 TCS genes encoding for 25 histidine kinase/histidine-kinase-like (HK(L)) (21 HKs and 4 HKLs), 8 histidine phosphotransfer proteins (HP) (5 authentic and 3 pseudo), and 36 response regulators (RR; 14 type A, 14 type B, 2 type C, and 6 pseudo) in the genome of Z. latifolia. These TCS genes have a close phylogenetic relationship with their rice counterparts. Nineteen duplicated TCS gene pairs were found and the ratio of nonsynonymous to synonymous mutations indicated that a strong purifying selection acted on these duplicated genes, leading to few mutations during evolution. Finally, ZlCHK1, ZlRRA5, ZIRRA9, ZlRRA10, ZlPRR1, and ZlPHYA expression was associated with gall formation. Among them, ARR5, ARR9, and ZlPHYA are quickly induced by trans-zeatin, suggesting a role for cytokinin signaling in shoot swelling of Z. latifolia.


2019 ◽  
Vol 519 (1) ◽  
pp. 198-203
Author(s):  
Lei Cheng ◽  
Jianming Yue ◽  
Sheng Yin ◽  
Mingjing Ren ◽  
Chengtao Wang

2005 ◽  
Vol 187 (21) ◽  
pp. 7317-7324 ◽  
Author(s):  
Henrik Tomenius ◽  
Anna-Karin Pernestig ◽  
Claudia F. Méndez-Catalá ◽  
Dimitris Georgellis ◽  
Staffan Normark ◽  
...  

ABSTRACT The BarA-UvrY two-component system family is strongly associated with virulence but is poorly understood at the molecular level. During our attempts to complement a barA deletion mutant, we consistently generated various mutated BarA proteins. We reasoned that characterization of the mutants would help us to better understand the signal transduction mechanism in tripartite sensors. This was aided by the demonstrated ability to activate the UvrY regulator with acetyl phosphate independently of the BarA sensor. Many of the mutated BarA proteins had poor complementation activity but could counteract the activity of the wild-type sensor in a dominant-negative fashion. These proteins carried point mutations in or near the recently identified HAMP linker, previously implicated in signal transduction between the periplasm and cytoplasm. This created sensor proteins with an impaired kinase activity and a net dephosphorylating activity. Using further site-directed mutagenesis of a HAMP linker-mutated protein, we could demonstrate that the phosphoaccepting aspartate 718 and histidine 861 are crucial for the dephosphorylating activity. Additional analysis of the HAMP linker-mutated BarA sensors demonstrated that a dephosphorylating activity can operate via phosphotransfer within a tripartite sensor dimer in vivo. This also means that a tripartite sensor can be arranged as a dimer even in the dephosphorylating mode.


2006 ◽  
Vol 61 (11-12) ◽  
pp. 865-878 ◽  
Author(s):  
Anke Nodop ◽  
Iwane Suzuki ◽  
Aiko Barsch ◽  
Ann-Kristin Schröder ◽  
Karsten Niehaus ◽  
...  

Abstract The hybrid sensory histidine kinase Slr1759 of the cyanobacterium Synechocystis sp. strain PCC 6803 contains multiple sensory domains and a multi-step phosphorelay system. Immuno blot analysis provided evidence that the histidine kinase Slr1759 is associated with the cytoplasmic membrane. The gene slr1759 is part of an operon together with slr1760, encoding a response regulator. A comparative investigation was performed on Synechocystis sp. strain PCC 6803 wild type (WT) and an insertionally inactivated slr1759-mutant (Hik14) which also lacks the transcript for the response regulator Slr1760. The mutant Hik14 grew significantly slower than WT in the early growth phase, when both were inoculated with a low cell density into BG11 medium without additional buffer and when aerated with air enriched with 2% CO2. Since the aeration with CO2-enriched air results in a decrease of the pH value in the medium, the growth experiments indicated that Hik14 is not able to adjust its metabolic activities as rapidly as WT to compensate for a larger decrease of the pH value in the medium. No significant differences in growth between Hik14 and WT were observed when cells were inoculated with a higher cell density in BG11 medium or when the BG11 medium contained 50 mm Epps-NaOH, pH 7.5, to prevent the pH drop. This Hik14 phenotype has so far only been seen under the above defined growth condition. Results of photosynthetic activity measurements as well as Northern blot-, immuno blot-, and metabolite analyses suggest that the two-component system Slr1759/Slr1760 has a function in the coordination of several metabolic activities which is in good agreement with the complex domain structure of Slr1759. The direct targets of this two-component system have so far not been identified.


Sign in / Sign up

Export Citation Format

Share Document