scholarly journals Genome-Wide Characterization and Expression of Two-Component System Genes in Cytokinin-Regulated Gall Formation in Zizania latifolia

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1409
Author(s):  
Lili He ◽  
Feng Zhang ◽  
Xiaozhen Wu ◽  
Yanmei Hu ◽  
LiLi Dong ◽  
...  

The thickening of Zizania latifolia shoots, referred to as gall formation, depends on infection with the fungal endophyte Ustilago esculenta. The swollen and juicy shoots are a popular vegetable in Asia. A key role for cytokinin action in this process was postulated. Here, trans-zeatin stimulated swelling in fungi-infected Z. latifolia. A two-component system (TCS) linked cytokinin binding to receptors with transcriptional regulation in the nucleus and played important roles in diverse biological processes. We characterized 69 TCS genes encoding for 25 histidine kinase/histidine-kinase-like (HK(L)) (21 HKs and 4 HKLs), 8 histidine phosphotransfer proteins (HP) (5 authentic and 3 pseudo), and 36 response regulators (RR; 14 type A, 14 type B, 2 type C, and 6 pseudo) in the genome of Z. latifolia. These TCS genes have a close phylogenetic relationship with their rice counterparts. Nineteen duplicated TCS gene pairs were found and the ratio of nonsynonymous to synonymous mutations indicated that a strong purifying selection acted on these duplicated genes, leading to few mutations during evolution. Finally, ZlCHK1, ZlRRA5, ZIRRA9, ZlRRA10, ZlPRR1, and ZlPHYA expression was associated with gall formation. Among them, ARR5, ARR9, and ZlPHYA are quickly induced by trans-zeatin, suggesting a role for cytokinin signaling in shoot swelling of Z. latifolia.

2009 ◽  
Vol 191 (16) ◽  
pp. 5304-5311 ◽  
Author(s):  
Davide Quaranta ◽  
Megan M. McEvoy ◽  
Christopher Rensing

ABSTRACT In the presence of copper, Pseudomonas putida activates transcription of cinAQ via the two-component system CinS-CinR. The CinS-CinR TCS was responsive to 0.5 μM copper and was specifically activated only by copper and silver. Modeling studies of CinS identified a potential copper binding site containing H37 and H147. CinS mutants with H37R and H147R mutations had an almost 10-fold reduced copper-dependent induction of cinAQ compared to the wild type.


2006 ◽  
Vol 61 (11-12) ◽  
pp. 865-878 ◽  
Author(s):  
Anke Nodop ◽  
Iwane Suzuki ◽  
Aiko Barsch ◽  
Ann-Kristin Schröder ◽  
Karsten Niehaus ◽  
...  

Abstract The hybrid sensory histidine kinase Slr1759 of the cyanobacterium Synechocystis sp. strain PCC 6803 contains multiple sensory domains and a multi-step phosphorelay system. Immuno blot analysis provided evidence that the histidine kinase Slr1759 is associated with the cytoplasmic membrane. The gene slr1759 is part of an operon together with slr1760, encoding a response regulator. A comparative investigation was performed on Synechocystis sp. strain PCC 6803 wild type (WT) and an insertionally inactivated slr1759-mutant (Hik14) which also lacks the transcript for the response regulator Slr1760. The mutant Hik14 grew significantly slower than WT in the early growth phase, when both were inoculated with a low cell density into BG11 medium without additional buffer and when aerated with air enriched with 2% CO2. Since the aeration with CO2-enriched air results in a decrease of the pH value in the medium, the growth experiments indicated that Hik14 is not able to adjust its metabolic activities as rapidly as WT to compensate for a larger decrease of the pH value in the medium. No significant differences in growth between Hik14 and WT were observed when cells were inoculated with a higher cell density in BG11 medium or when the BG11 medium contained 50 mm Epps-NaOH, pH 7.5, to prevent the pH drop. This Hik14 phenotype has so far only been seen under the above defined growth condition. Results of photosynthetic activity measurements as well as Northern blot-, immuno blot-, and metabolite analyses suggest that the two-component system Slr1759/Slr1760 has a function in the coordination of several metabolic activities which is in good agreement with the complex domain structure of Slr1759. The direct targets of this two-component system have so far not been identified.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 252 ◽  
Author(s):  
Uzma Muzamal ◽  
Daniel Gomez ◽  
Fenika Kapadia ◽  
Dasantila Golemi-Kotra

The response to cationic antimicrobial peptides (CAMPs) in Staphylococcus aureus relies on a two-component system (TCS), GraSR, an auxiliary protein GraX and an ATP-binding cassette (ABC) transporter, VraF/G. To understand the signal transduction mechanism by GraSR, we investigated the kinase activity of the cytoplasmic domain of histidine kinase GraS and the interaction with its cognate response regulator GraR. We also investigated interactions among the auxiliary protein GraX, GraS/R and the ATPase protein of the ABC transporter, VraF. We found that GraS lacks autophosphorylation activity, unlike a similar histidine kinase, BceS, of Bacillus subtilis. In addition, the interaction between GraS and GraR is very weak in comparison to the stronger interaction observed between BceS and its conjugated response regulator, BceR, suggesting that CAMP signaling may not flow directly from GraS to GraR. We found that the auxiliary protein GraX interacts with VraF and GraR, and requires the histidine phosphotransfer and dimerization domain of GraS to interact with this protein. Further, VraF requires the GraS region that connects the membrane-bound domain with the cytoplasmic domain of this protein for interaction with GraS. The interactions of GraX with GraS/R and VraF indicate that GraX may serve as a scaffold to bring these proteins in close proximity to GraS, plausibly to facilitate activation of GraS to ultimately transduce the signal to GraR.


2021 ◽  
Vol 7 (8) ◽  
pp. 610
Author(s):  
Enping Cai ◽  
Shuquan Sun ◽  
Yizhen Deng ◽  
Peishen Huang ◽  
Xian Sun ◽  
...  

Many prokaryotes and eukaryotes utilize two-component signaling pathways to counter environmental stress and regulate virulence genes associated with infection. In this study, we identified and characterized a conserved histidine kinase (SsSln1), which is the sensor of the two-component system of Sln1–Ypd1–Ssk1 in Sporisorium scitamineum. SsSln1 null mutant exhibited enhanced mating and virulence capabilities in S. scitamineum, which is opposite to what has been reported in Candida albicans. Further investigations revealed that the deletion of SsSLN1 enhanced SsHog1 phosphorylation and nuclear localization and thus promoted S. scitamineum mating. Interestingly, SsSln1 and cAMP/PKA signaling pathways antagonistically regulated the transcription of pheromone-responsive transcription factor SsPrf1, for regulating S. scitamineum mating and virulence. In short, the study depicts a novel mechanism in which the cross-talk between SsSln1 and cAMP/PKA pathways antagonistically regulates mating and virulence by balancing the transcription of the SsPRF1 gene in S. scitamineum.


Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 772-779 ◽  
Author(s):  
Rashmi Shrivastava ◽  
Ananta Kumar Ghosh ◽  
Amit Kumar Das

Two-component signal transduction pathways comprising a histidine kinase and its cognate response regulator play a dominant role in the adaptation of Mycobacterium tuberculosis to its host, and its virulence, pathogenicity and latency. Autophosphorylation occurs at a conserved histidine of the histidine kinase and subsequently the phosphoryl group is transferred to the conserved aspartate of its cognate response regulator. Among the twelve two-component systems of M. tuberculosis, Rv0600c (HK1), Rv0601c (HK2) and Rv0602c (TcrA) are annotated as a unique three-protein two-component system. HK1 contains an ATP-binding domain, and HK2, a novel Hpt mono-domain protein, contains the conserved phosphorylable histidine residue. HK1 and HK2 complement each other's functions. Interactions among different domains of the HK1, HK2 and TcrA proteins were studied using a yeast two-hybrid system. Self-interaction was observed for HK2 but not for HK1 or TcrA. HK2 was found to interact reasonably well with both HK1 and TcrA, but HK1 interacted weakly with TcrA. The conserved aspartate-containing receiver domain of TcrA interacted well with HK2 but not with HK1. These results suggest the existence of a novel signalling mechanism amongst HK1–HK2–TcrA, and a model for this mechanism is proposed.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 252 ◽  
Author(s):  
Uzma Muzamal ◽  
Daniel Gomez ◽  
Fenika Kapadia ◽  
Dasantila Golemi-Kotra

The response to cationic antimicrobial peptides (CAMPs) in Staphylococcus aureus relies on a two-component system (TCS), GraSR, an auxiliary protein GraX and an ATP-binding cassette (ABC) transporter, VraF/G. To understand the signal transduction mechanism by GraSR, we investigated the kinase activity of the cytoplasmic domain of histidine kinase GraS and the interaction with its cognate response regulator GraR. We also investigated interactions among the auxiliary protein GraX, GraS/R and the ATPase protein of the ABC transporter, VraF. We found that GraS lacks autophosphorylation activity, unlike a similar histidine kinase, BceS, of Bacillus subtilis. In addition, the interaction between GraS and GraR is very weak in comparison to the stronger interaction observed between BceS and its conjugated response regulator, BceR, suggesting that CAMP signaling may not flow directly from GraS to GraR. We found that the auxiliary protein GraX interacts with VraF and GraR, and requires the histidine phosphotransfer and dimerization domain of GraS to interact with this protein. Further, VraF requires the GraS region that connects the membrane-bound domain with the cytoplasmic domain of this protein for interaction with GraS. The interactions of GraX with GraS/R and VraF indicate that GraX may serve as a scaffold to bring these proteins in close proximity to GraS, plausibly to facilitate activation of GraS to ultimately transduce the signal to GraR.


2020 ◽  
Author(s):  
Alexis Proutière ◽  
Bruno Périchon ◽  
Laurence du Merle ◽  
Hugo Varet ◽  
Patrick Trieu-Cuot ◽  
...  

AbstractBacteriocins are natural antimicrobial peptides produced by bacteria to kill closely related competitors. The opportunistic pathogen Streptococcus gallolyticus (Sgg) was recently shown to outcompete commensal enterococci of the murine microbiota in tumoral conditions thanks to the production of a two-peptide bacteriocin named gallocin. We here identified 4 genes involved in the regulatory control of gallocin in Sgg UCN34, respectively encoding a histidine kinase/response regulator two-component system (BlpH/BlpR), a secreted peptide (GSP), and a putative regulator of unknown function (BlpS). While BlpR is a typical 243-aa response regulator possessing a phospho-receiver domain and a LytTR DNA-binding domain, BlpS is a 108-aa protein containing only a LytTR domain. Our results showed that the secreted peptide GSP activates the dedicated two-component system BlpH/BlpR to induce gallocin transcription. A genome-wide transcriptome analysis indicates that this regulatory system (GSP-BlpH/BlpR) is highly specific for bacteriocin production. Importantly, as opposed to BlpR, BlpS was shown to repress gallocin gene transcription. A conserved operator DNA sequence of 30-bp was found in all promoter regions regulated by BlpR and BlpS. EMSA assays showed direct and specific binding of the two gallocin regulators to various regulated promoter regions in a dose dependent manner. Gallocin expression appears tightly controlled in Sgg by quorum sensing and antagonistic activity of 2 LytTR-containing proteins.SignificanceStreptococcus gallolyticus (Sgg), formely known as S. bovis biotype I, is an opportunistic pathogen causing septicemia and endocarditis in the elderly often associated with asymptomatic colonic neoplasia. We previously showed that Sgg produces a bacteriocin, termed gallocin, enabling colonization of the colon in tumoral conditions by outcompeting commensal members of the gut. Here we characterized a 4-component regulatory system that regulates gallocin transcription, which is activated by the response regulator BlpR. BlpR itself is activated by a quorum sensing peptide GSP and a dedicated histidine kinase BlpH. Interestingly, BlpS, a small DNA-binding protein co-transcribed with BlpR was found to repress gallocin genes transcription, likely by antagonizing BlpR. Understanding gallocin regulation is crucial to prevent Sgg colon colonization in tumoral conditions.


2005 ◽  
Vol 45 (supplement) ◽  
pp. S43
Author(s):  
S. Yamada ◽  
S. Akiyama ◽  
H. Sugimoto ◽  
H. Kumita ◽  
K. Ito ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 2026
Author(s):  
Alexandra A. Guffey ◽  
Patrick J. Loll

Vancomycin-resistant enterococci (VRE) are a serious threat to human health, with few treatment options being available. New therapeutics are urgently needed to relieve the health and economic burdens presented by VRE. A potential target for new therapeutics is the VanRS two-component system, which regulates the expression of vancomycin resistance in VRE. VanS is a sensor histidine kinase that detects vancomycin and in turn activates VanR; VanR is a response regulator that, when activated, directs expression of vancomycin-resistance genes. This review of VanRS examines how the expression of vancomycin resistance is regulated, and provides an update on one of the field’s most pressing questions: How does VanS sense vancomycin?


Sign in / Sign up

Export Citation Format

Share Document