scholarly journals Bacillus anthracis lcpGenes Support Vegetative Growth, Envelope Assembly, and Spore Formation

2015 ◽  
Vol 197 (23) ◽  
pp. 3731-3741 ◽  
Author(s):  
Megan Liszewski Zilla ◽  
J. Mark Lunderberg ◽  
Olaf Schneewind ◽  
Dominique Missiakas

ABSTRACTBacillus anthracis, a spore-forming pathogen, replicates as chains of vegetative cells by regulating the separation of septal peptidoglycan. Surface (S)-layer proteins andB. anthracisS-layer-associated proteins (BSLs) function as chain length determinants and are assembled in the envelope by binding to the secondary cell wall polysaccharide (SCWP).B. anthracisexpresses six different genes encoding LytR-CpsA-Psr (LCP) enzymes (lcpB1to -4,lcpC, andlcpD), which when expressed inStaphylococcus aureuspromote attachment of wall teichoic acid to peptidoglycan. Mutations inB. anthracislcpB3andlcpDcause aberrations in cell size and chain length that can be explained as discrete defects in SCWP assembly; however, the function of the otherlcpgenes is not known. By deleting combinations oflcpgenes from theB. anthracisgenome, we generated variants with singlelcpgenes.B. anthracisexpressinglcpB3alone displayed physiological cell size, vegetative growth, spore formation, and S-layer assembly. Strains expressinglcpB1orlcpB4displayed defects in cell size and shape, S-layer assembly, and spore formation yet sustained vegetative growth. In contrast, thelcpB2strain was unable to grow unless the gene was expressed from a multicopy plasmid (lcpB2++), and variants expressinglcpCorlcpDdisplayed severe defects in growth and cell shape. ThelcpB2++,lcpC, orlcpDstrains supported neither S-layer assembly nor spore formation. We propose a model whereby LCP enzymes fulfill partially overlapping functions in transferring SCWP molecules to discrete sites within the bacterial envelope.IMPORTANCEProducts of genes essential for bacterial envelope assembly represent targets for antibiotic development. The LytR-CpsA-Psr (LCP) enzymes tether bactoprenol-linked intermediates of secondary cell wall polymers to the C6 hydroxyl ofN-acetylmuramic acid in peptidoglycan; however, the role of LCPs as a target for antibiotic therapy is not defined. We show here that LCP enzymes are essential for the cell cycle, vegetative growth, and spore formation ofBacillus anthracis, the causative agent of anthrax disease. Furthermore, we assign functions for each of the six LCP enzymes, including cell size and shape, vegetative growth and sporulation, and S-layer and S-layer-associated protein assembly.

2014 ◽  
Vol 197 (2) ◽  
pp. 343-353 ◽  
Author(s):  
Megan Liszewski Zilla ◽  
Yvonne G. Y. Chan ◽  
Justin Mark Lunderberg ◽  
Olaf Schneewind ◽  
Dominique Missiakas

Bacillus anthracis, the causative agent of anthrax, replicates as chains of vegetative cells by regulating the separation of septal peptidoglycan. Surface (S)-layer proteins and associated proteins (BSLs) function as chain length determinants and bind to the secondary cell wall polysaccharide (SCWP). In this study, we identified theB. anthracislcpDmutant, which displays increased chain length and S-layer assembly defects due to diminished SCWP attachment to peptidoglycan. In contrast, theB. anthracislcpB3variant displayed reduced cell size and chain length, which could be attributed to increased deposition of BSLs. In other bacteria, LytR-CpsA-Psr (LCP) proteins attach wall teichoic acid (WTA) and polysaccharide capsule to peptidoglycan.B. anthracisdoes not synthesize these polymers, yet its genome encodes six LCP homologues, which, when expressed inS. aureus, promote WTA attachment. We propose a model wherebyB. anthracisLCPs promote attachment of SCWP precursors to discrete locations in the peptidoglycan, enabling BSL assembly and regulated separation of septal peptidoglycan.


2016 ◽  
Vol 199 (1) ◽  
Author(s):  
So-Young Oh ◽  
J. Mark Lunderberg ◽  
Alice Chateau ◽  
Olaf Schneewind ◽  
Dominique Missiakas

ABSTRACT The secondary cell wall polysaccharide (SCWP) is thought to be essential for vegetative growth and surface (S)-layer assembly in Bacillus anthracis; however, the genetic determinants for the assembly of its trisaccharide repeat structure are not known. Here, we report that WpaA (BAS0847) and WpaB (BAS5274) share features with membrane proteins involved in the assembly of O-antigen lipopolysaccharide in Gram-negative bacteria and propose that WpaA and WpaB contribute to the assembly of the SCWP in B. anthracis. Vegetative forms of the B. anthracis wpaA mutant displayed increased lengths of cell chains, a cell separation defect that was attributed to mislocalization of the S-layer-associated murein hydrolases BslO, BslS, and BslT. The wpaB mutant was defective in vegetative replication during early logarithmic growth and formed smaller colonies. Deletion of both genes, wpaA and wpaB, did not yield viable bacilli, and when depleted of both wpaA and wpaB, B. anthracis could not maintain cell shape, support vegetative growth, or assemble SCWP. We propose that WpaA and WpaB fulfill overlapping glycosyltransferase functions of either polymerizing repeat units or transferring SCWP polymers to linkage units prior to LCP-mediated anchoring of the polysaccharide to peptidoglycan. IMPORTANCE The secondary cell wall polysaccharide (SCWP) is essential for Bacillus anthracis growth, cell shape, and division. SCWP is comprised of trisaccharide repeats (→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→) with α-Gal and β-Gal substitutions; however, the genetic determinants and enzymes for SCWP synthesis are not known. Here, we identify WpaA and WpaB and report that depletion of these factors affects vegetative growth, cell shape, and S-layer assembly. We hypothesize that WpaA and WpaB are involved in the assembly of SCWP prior to transfer of this polymer onto peptidoglycan.


2015 ◽  
Vol 197 (22) ◽  
pp. 3511-3520 ◽  
Author(s):  
J. Mark Lunderberg ◽  
Megan Liszewski Zilla ◽  
Dominique Missiakas ◽  
Olaf Schneewind

ABSTRACTBacillus anthraciselaborates a linear secondary cell wall polysaccharide (SCWP) that retains surface (S)-layer and associated proteins via their S-layer homology (SLH) domains. The SCWP is comprised of trisaccharide repeats [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→] and tethered via acid-labile phosphodiester bonds to peptidoglycan. Earlier work identified UDP-GlcNAc 2-epimerases GneY (BAS5048) and GneZ (BAS5117), which act as catalysts of ManNAc synthesis, as well as a polysaccharide deacetylase (BAS5051), as factors contributing to SCWP synthesis. Here, we show thattagO(BAS5050), which encodes a UDP-N-acetylglucosamine:undecaprenyl-PN-acetylglucosaminyl 1-P transferase, the enzyme that initiates the synthesis of murein linkage units, is required forB. anthracisSCWP synthesis and S-layer assembly. Similar togneY-gneZmutants,B. anthracisstrains lackingtagOcannot maintain cell shape or support vegetative growth. In contrast, mutations in BAS5051 do not affectB. anthraciscell shape, vegetative growth, SCWP synthesis, or S-layer assembly. These data suggest that TagO-mediated murein linkage unit assembly supports SCWP synthesis and attachment to the peptidoglycan via acid-labile phosphodiester bonds. Further,B. anthracisvariants unable to synthesize SCWP trisaccharide repeats cannot sustain cell shape and vegetative growth.IMPORTANCEBacillus anthraciselaborates an SCWP to support vegetative growth and envelope assembly. Here, we show that some, but not all, SCWP synthesis is dependent ontagO-derived murein linkage units and subsequent attachment of SCWP to peptidoglycan. The data implicate secondary polymer modifications of peptidoglycan and subcellular distributions as a key feature of the cell cycle in Gram-positive bacteria and establish foundations for work on the molecular functions of the SCWP and on inhibitors with antibiotic attributes.


2020 ◽  
Vol 202 (15) ◽  
Author(s):  
Alice Chateau ◽  
So Young Oh ◽  
Anastasia Tomatsidou ◽  
Inka Brockhausen ◽  
Olaf Schneewind ◽  
...  

ABSTRACT Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is required for the retention of surface layer (S-layer) and S-layer homology (SLH) domain proteins. Genetic disruption of the SCWP biosynthetic pathway impairs growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats composed of one ManNAc and two GlcNAc residues with O-3–α-Gal and O-4–β-Gal substitutions. UDP-Gal, synthesized by GalE1, is the substrate of galactosyltransferases that modify the SCWP repeat. Here, we show that the gtsE gene, which encodes a predicted glycosyltransferase with a GT-A fold, is required for O-4–β-Gal modification of trisaccharide repeats. We identify a DXD motif critical for GtsE activity. Three distinct genes, gtsA, gtsB, and gtsC, are required for O-3–α-Gal modification of trisaccharide repeats. Based on the similarity with other three-component glycosyltransferase systems, we propose that GtsA transfers Gal from cytosolic UDP-Gal to undecaprenyl phosphate (C55-P), GtsB flips the C55-P-Gal intermediate to the trans side of the membrane, and GtsC transfers Gal onto trisaccharide repeats. The deletion of galE1 does not affect growth in vitro, suggesting that galactosyl modifications are dispensable for the function of SCWP. The deletion of gtsA, gtsB, or gtsC leads to a loss of viability, yet gtsA and gtsC can be deleted in strains lacking galE1 or gtsE. We propose that the loss of viability is caused by the accumulation of undecaprenol-bound precursors and present an updated model for SCWP assembly in B. anthracis to account for the galactosylation of repeat units. IMPORTANCE Peptidoglycan is a conserved extracellular macromolecule that protects bacterial cells from turgor pressure. Peptidoglycan of Gram-positive bacteria serves as a scaffold for the attachment of polymers that provide defined bacterial interactions with their environment. One such polymer, B. anthracis SCWP, is pyruvylated at its distal end to serve as a receptor for secreted proteins bearing the S-layer homology domain. Repeat units of SCWP carry three galactoses in B. anthracis. Glycosylation is a recurring theme in nature and often represents a means to mask or alter conserved molecular signatures from intruders such as bacteriophages. Several glycosyltransferase families have been described based on bioinformatics prediction, but few have been studied. Here, we describe the glycosyltransferases that mediate the galactosylation of B. anthracis SCWP.


2017 ◽  
Vol 200 (5) ◽  
Author(s):  
Alice Chateau ◽  
Justin Mark Lunderberg ◽  
So Young Oh ◽  
Teresa Abshire ◽  
Arthur Friedlander ◽  
...  

ABSTRACTBacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is essential for bacterial growth and cell division.B. anthracisSCWP is comprised of trisaccharide repeats with the structure, [→4)-β-ManNAc-(1→4)-β-GlcNAc(O3-α-Gal)-(1→6)-α-GlcNAc(O3-α-Gal,O4-β-Gal)-(1→]6-12. The genes whose products promote the galactosylation ofB. anthracisSCWP are not yet known. We show here that the expression ofgalE1, encoding a UDP-glucose 4-epimerase necessary for the synthesis of UDP-galactose, is required forB. anthracisSCWP galactosylation. ThegalE1mutant assembles surface (S) layer and S layer-associated proteins that associate with ketal-pyruvylated SCWP via their S layer homology domains similarly to wild-typeB. anthracis, but the mutant displays a defect in γ-phage murein hydrolase binding to SCWP. Furthermore, deletion ofgalE1diminishes the capsulation ofB. anthraciswith poly-d-γ-glutamic acid (PDGA) and causes a reduction in bacterial virulence. These data suggest that SCWP galactosylation is required for the physiologic assembly of theB. anthraciscell wall envelope and for the pathogenesis of anthrax disease.IMPORTANCEUnlike virulentBacillus anthracisisolates,B. anthracisstrain CDC684 synthesizes secondary cell wall polysaccharide (SCWP) trisaccharide repeats without galactosyl modification, exhibits diminished growthin vitroin broth cultures, and is severely attenuated in an animal model of anthrax. To examine whether SCWP galactosylation is a requirement for anthrax disease, we generated variants ofB. anthracisstrains Sterne 34F2 and Ames lacking UDP-glucose 4-epimerase by mutating the genesgalE1andgalE2. We identifiedgalE1as necessary for SCWP galactosylation. Deletion ofgalE1decreased the poly-d-γ-glutamic acid (PDGA) capsulation of the vegetative form ofB. anthracisand increased the bacterial inoculum required to produce lethal disease in mice, indicating that SCWP galactosylation is indeed a determinant of anthrax disease.


2013 ◽  
Vol 13 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Frans M. Klis ◽  
Chris G. de Koster ◽  
Stanley Brul

ABSTRACTBionumbers and bioestimates are valuable tools in biological research. Here we focus on cell wall-related bionumbers and bioestimates of the budding yeastSaccharomyces cerevisiaeand the polymorphic, pathogenic fungusCandida albicans. We discuss the linear relationship between cell size and cell ploidy, the correlation between cell size and specific growth rate, the effect of turgor pressure on cell size, and the reason why using fixed cells for measuring cellular dimensions can result in serious underestimation ofin vivovalues. We further consider the evidence that individual buds and hyphae grow linearly and that exponential growth of the population results from regular formation of new daughter cells and regular hyphal branching. Our calculations show that hyphal growth allowsC. albicansto cover much larger distances per unit of time than the yeast mode of growth and that this is accompanied by strongly increased surface expansion rates. We therefore predict that the transcript levels of genes involved in wall formation increase during hyphal growth. Interestingly, wall proteins and polysaccharides seem barely, if at all, subject to turnover and replacement. A general lesson is how strongly most bionumbers and bioestimates depend on environmental conditions and genetic background, thus reemphasizing the importance of well-defined and carefully chosen culture conditions and experimental approaches. Finally, we propose that the numbers and estimates described here offer a solid starting point for similar studies of other cell compartments and other yeast species.


2021 ◽  
Vol 203 (10) ◽  
Author(s):  
Nkrumah A. Grant ◽  
Ali Abdel Magid ◽  
Joshua Franklin ◽  
Yann Dufour ◽  
Richard E. Lenski

ABSTRACT Bacteria adopt a wide variety of sizes and shapes, with many species exhibiting stereotypical morphologies. How morphology changes, and over what timescales, is less clear. Previous work examining cell morphology in an experiment with Escherichia coli showed that populations evolved larger cells and, in some cases, cells that were less rod-like. That experiment has now run for over two more decades. Meanwhile, genome sequence data are available for these populations, and new computational methods enable high-throughput microscopic analyses. In this study, we measured stationary-phase cell volumes for the ancestor and 12 populations at 2,000, 10,000, and 50,000 generations, including measurements during exponential growth at the last time point. We measured the distribution of cell volumes for each sample using a Coulter counter and microscopy, the latter of which also provided data on cell shape. Our data confirm the trend toward larger cells while also revealing substantial variation in size and shape across replicate populations. Most populations first evolved wider cells but later reverted to the ancestral length-to-width ratio. All but one population evolved mutations in rod shape maintenance genes. We also observed many ghost-like cells in the only population that evolved the novel ability to grow on citrate, supporting the hypothesis that this lineage struggles with maintaining balanced growth. Lastly, we show that cell size and fitness remain correlated across 50,000 generations. Our results suggest that larger cells are beneficial in the experimental environment, while the reversion toward ancestral length-to-width ratios suggests partial compensation for the less favorable surface area-to-volume ratios of the evolved cells. IMPORTANCE Bacteria exhibit great morphological diversity, yet we have only a limited understanding of how their cell sizes and shapes evolve and of how these features affect organismal fitness. This knowledge gap reflects, in part, the paucity of the fossil record for bacteria. In this study, we revived and analyzed samples extending over 50,000 generations from 12 populations of experimentally evolving Escherichia coli to investigate the relation between cell size, shape, and fitness. Using this “frozen fossil record,” we show that all 12 populations evolved larger cells concomitant with increased fitness, with substantial heterogeneity in cell size and shape across the replicate lines. Our work demonstrates that cell morphology can readily evolve and diversify, even among populations living in identical environments.


2016 ◽  
Vol 82 (18) ◽  
pp. 5661-5672 ◽  
Author(s):  
Steffen Sigle ◽  
Nadja Steblau ◽  
Wolfgang Wohlleben ◽  
Günther Muth

ABSTRACTAlthough anionic glycopolymers are crucial components of the Gram-positive cell envelope, the relevance of anionic glycopolymers for vegetative growth and morphological differentiation ofStreptomyces coelicolorA3(2) is unknown. Here, we show that the LytR-CpsA-Psr (LCP) protein PdtA (SCO2578), a TagV-like glycopolymer transferase, has a dual function in theS. coelicolorA3(2) life cycle. Despite the presence of 10 additional LCP homologs, PdtA is crucial for proper sporulation. The integrity of the spore envelope was severely affected in apdtAdeletion mutant, resulting in 34% nonviable spores.pdtAdeletion caused a significant reduction in the polydiglycosylphosphate content of the spore envelope. Beyond that, apical tip extension and normal branching of vegetative mycelium were severely impaired on high-salt medium. This growth defect coincided with the mislocalization of peptidoglycan synthesis. Thus, PdtA itself or the polydiglycosylphosphate attached to the peptidoglycan by the glycopolymer transferase PdtA also has a crucial function in apical tip extension of vegetative hyphae under stress conditions.IMPORTANCEAnionic glycopolymers are underappreciated components of the Gram-positive cell envelope. They provide rigidity to the cell wall and position extracellular enzymes involved in peptidoglycan remodeling. AlthoughStreptomyces coelicolorA3(2), the model organism for bacterial antibiotic production, is known to produce two distinct cell wall-linked glycopolymers, teichulosonic acid and polydiglycosylphosphate, the role of these glycopolymers in theS. coelicolorA3(2) life cycle has not been addressed so far. This study reveals a crucial function of the anionic glycopolymer polydiglycosylphosphate for the growth and morphological differentiation ofS. coelicolorA3(2). Polydiglycosylphosphate is attached to the spore wall by the LytR-CpsA-Psr protein PdtA (SCO2578), a component of theStreptomycesspore wall-synthesizing complex (SSSC), to ensure the integrity of the spore envelope. Surprisingly, PdtA also has a crucial role in vegetative growth under stress conditions and is required for proper peptidoglycan incorporation during apical tip extension.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Patrícia Alves de Castro ◽  
Clara Valero ◽  
Jéssica Chiaratto ◽  
Ana Cristina Colabardini ◽  
Lakhansing Pardeshi ◽  
...  

ABSTRACT The fungal zinc finger transcription factor NsdC is named after, and is best known for, its essential role in sexual reproduction (never in sexual development). In previous studies with Aspergillus nidulans, it was also shown to have roles in promotion of vegetative growth and suppression of asexual conidiation. In this study, the function of the nsdC homologue in the opportunistic human pathogen A. fumigatus was investigated. NsdC was again found to be essential for sexual development, with deletion of the nsdC gene in both MAT1-1 and MAT1-2 mating partners of a cross leading to complete loss of fertility. However, a functional copy of nsdC in one mating partner was sufficient to allow sexual reproduction. Deletion of nsdC also led to decreased vegetative growth and allowed conidiation in liquid cultures, again consistent with previous findings. However, NsdC in A. fumigatus was shown to have additional biological functions including response to calcium stress, correct organization of cell wall structure, and response to the cell wall stressors. Furthermore, virulence and host immune recognition were affected. Gene expression studies involving chromatin immunoprecipitation (ChIP) of RNA polymerase II (PolII) coupled to next-generation sequencing (Seq) revealed that deletion of nsdC resulted in changes in expression of over 620 genes under basal growth conditions. This demonstrated that this transcription factor mediates the activity of a wide variety of signaling and metabolic pathways and indicates that despite the naming of the gene, the promotion of sexual reproduction is just one among multiple roles of NsdC. IMPORTANCE Aspergillus fumigatus is an opportunistic human fungal pathogen and the main causal agent of invasive aspergillosis, a life-threatening infection especially in immunocompromised patients. A. fumigatus can undergo both asexual and sexual reproductive cycles, and the regulation of both cycles involves several genes and pathways. Here, we have characterized one of these genetic determinants, the NsdC transcription factor, which was initially identified in a screen of transcription factor null mutants showing sensitivity when exposed to high concentrations of calcium. In addition to its known essential roles in sexual reproduction and control of growth rate and asexual reproduction, we have shown in the present study that A. fumigatus NsdC transcription factor has additional previously unrecognized biological functions including calcium tolerance, cell wall stress response, and correct cell wall organization and functions in virulence and host immune recognition. Our results indicate that NsdC can play novel additional biological functions not directly related to its role played during sexual and asexual processes.


Sign in / Sign up

Export Citation Format

Share Document