scholarly journals A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa

2019 ◽  
Vol 202 (6) ◽  
Author(s):  
E. A. Rundell ◽  
N. Commodore ◽  
A. L. Goodman ◽  
B. I. Kazmierczak

ABSTRACT The intrinsic resistance of Pseudomonas aeruginosa to many antibiotics limits treatment options for pseudomonal infections. P. aeruginosa’s outer membrane is highly impermeable and decreases antibiotic entry into the cell. We used an unbiased high-throughput approach to examine mechanisms underlying outer membrane-mediated antibiotic exclusion. Insertion sequencing (INSeq) identified genes that altered fitness in the presence of linezolid, rifampin, and vancomycin, antibiotics to which P. aeruginosa is intrinsically resistant. We reasoned that resistance to at least one of these antibiotics would depend on outer membrane barrier function, as previously demonstrated in Escherichia coli and Vibrio cholerae. This approach demonstrated a critical role of the outer membrane barrier in vancomycin fitness, while efflux pumps were primary contributors to fitness in the presence of linezolid and rifampin. Disruption of flagellar assembly or function was sufficient to confer a fitness advantage to bacteria exposed to vancomycin. These findings clearly show that loss of flagellar function alone can confer a fitness advantage in the presence of an antibiotic. IMPORTANCE The cell envelopes of Gram-negative bacteria render them intrinsically resistant to many classes of antibiotics. We used insertion sequencing to identify genes whose disruption altered the fitness of a highly antibiotic-resistant pathogen, Pseudomonas aeruginosa, in the presence of antibiotics usually excluded by the cell envelope. This screen identified gene products involved in outer membrane biogenesis and homeostasis, respiration, and efflux as important contributors to fitness. An unanticipated fitness cost of flagellar assembly and function in the presence of the glycopeptide antibiotic vancomycin was further characterized. These findings have clinical relevance for individuals with cystic fibrosis who are infected with P. aeruginosa and undergo treatment with vancomycin for a concurrent Staphylococcus aureus infection.

2001 ◽  
Vol 45 (7) ◽  
pp. 1964-1971 ◽  
Author(s):  
Kiyomi Okamoto ◽  
Naomasa Gotoh ◽  
Takeshi Nishino

ABSTRACT Pseudomonas aeruginosa exhibits high intrinsic resistance to penem antibiotics such as faropenem, ritipenem, AMA3176, sulopenem, Sch29482, and Sch34343. To investigate the mechanisms contributing to penem resistance, we used the laboratory strain PAO1 to construct a series of isogenic mutants with an impaired multidrug efflux system MexAB-OprM and/or impaired chromosomal AmpC β-lactamase. The outer membrane barrier of PAO1 was partially eliminated by inducing the expression of the plasmid-encodedEscherichia coli major porin OmpF. Susceptibility tests using the mutants and the OmpF expression plasmid showed that MexAB-OprM and the outer membrane barrier, but not AmpC β-lactamase, are the main mechanisms involved in the high intrinsic penem resistance of PAO1. However, reducing the high intrinsic penem resistance of PAO1 to the same level as that of penem-susceptible gram-negative bacteria such as E. coli required the loss of either both MexAB-OprM and AmpC β-lactamase or both MexAB-OprM and the outer membrane barrier. Competition experiments for penicillin-binding proteins (PBPs) revealed that the affinity of PBP 1b and PBP 2 for faropenem were about 1.8- and 1.5-fold lower, than the respective affinity for imipenem. Loss of the outer membrane barrier, MexAB, and AmpC β-lactamase increased the susceptibility of PAO1 to almost all penems tested compared to the susceptibility of the AmpC-deficient PAO1 mutants to imipenem. Thus, it is suggested that the high intrinsic penem resistance of P. aeruginosa is generated from the interplay among the outer membrane barrier, the active efflux system, and AmpC β-lactamase but not from the lower affinity of PBPs for penems.


2015 ◽  
Vol 59 (6) ◽  
pp. 3246-3251 ◽  
Author(s):  
Jerónimo Rodríguez-Beltrán ◽  
Gabriel Cabot ◽  
Estela Ynés Valencia ◽  
Coloma Costas ◽  
German Bou ◽  
...  

ABSTRACTThe modulating effect ofN-acetylcysteine (NAC) on the activity of different antibiotics has been studied inPseudomonas aeruginosa. Our results demonstrate that, in contrast to previous reports, only the activity of imipenem is clearly affected by NAC. MIC and checkerboard determinations indicate that the NAC-based modulation of imipenem activity is dependent mainly on OprD. SDS-PAGE of outer membrane proteins (OMPs) after NAC treatments demonstrates that NAC does not modify the expression of OprD, suggesting that NAC competitively inhibits the uptake of imipenem through OprD. Similar effects on imipenem activity were obtained withP. aeruginosaclinical isolates. Our results indicate that imipenem-susceptibleP. aeruginosastrains become resistant upon simultaneous treatment with NAC and imipenem. Moreover, the generality of the observed effects of NAC on antibiotic activity was assessed with two additional bacterial species,Escherichia coliandAcinetobacter baumannii. Caution should be taken during treatments, as the activity of imipenem may be modified by physiologically attainable concentrations of NAC, particularly during intravenous and nebulized regimes.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Whitney E. England ◽  
Ted Kim ◽  
Rachel J. Whitaker

ABSTRACTViruses that infect the widespread opportunistic pathogenPseudomonas aeruginosahave been shown to influence physiology and critical clinical outcomes in cystic fibrosis (CF) patients. To understand how CRISPR-Cas immune interactions may contribute to the distribution and coevolution ofP. aeruginosaand its viruses, we reconstructed CRISPR arrays from a highly sampled longitudinal data set from CF patients attending the Copenhagen Cystic Fibrosis Clinic in Copenhagen, Denmark (R. L. Marvig, L. M. Sommer, S. Molin, and H. K. Johansen, Nat Genet 47:57–64, 2015,https://doi.org/10.1038/ng.3148). We show that new spacers are not added to or deleted from CRISPR arrays over time within a single patient but do vary among patients in this data set. We compared assembled CRISPR arrays from this data set to CRISPR arrays extracted from 726 additional publicly availableP. aeruginosasequences to show that local diversity in this population encompasses global diversity and that there is no evidence for population structure associated with location or environment sampled. We compare over 3,000 spacers from our global data set to 98 lytic and temperate viruses and proviruses and find a subset of related temperate virus clusters frequently targeted by CRISPR spacers. Highly targeted viruses are matched by different spacers in different arrays, resulting in a pattern of distributed immunity within the global population. Understanding the multiple immune contexts thatP. aeruginosaviruses face can be applied to study ofP. aeruginosagene transfer, the spread of epidemic strains in cystic fibrosis patients, and viral control ofP. aeruginosainfection.IMPORTANCEPseudomonas aeruginosais a widespread opportunistic pathogen and a major cause of morbidity and mortality in cystic fibrosis patients. Microbe-virus interactions play a critical role in shaping microbial populations, as viral infections can kill microbial populations or contribute to gene flow among microbes. Investigating howP. aeruginosauses its CRISPR immune system to evade viral infection aids our understanding of how this organism spreads and evolves alongside its viruses in humans and the environment. Here, we identify patterns of CRISPR targeting and immunity that indicateP. aeruginosaand its viruses evolve in both a broad global population and in isolated human “islands.” These data set the stage for exploring metapopulation dynamics occurring within and between isolated “island” populations associated with CF patients, an essential step to inform future work predicting the specificity and efficacy of virus therapy and the spread of invasive viral elements and pathogenic epidemic bacterial strains.


2017 ◽  
Vol 85 (5) ◽  
Author(s):  
Alexandria A. Reinhart ◽  
Angela T. Nguyen ◽  
Luke K. Brewer ◽  
Justin Bevere ◽  
Jace W. Jones ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that requires iron for virulence. Iron homeostasis is maintained in part by the PrrF1 and PrrF2 small RNAs (sRNAs), which block the expression of iron-containing proteins under iron-depleted conditions. The PrrF sRNAs also promote the production of the Pseudomonas quinolone signal (PQS), a quorum sensing molecule that activates the expression of several virulence genes. The tandem arrangement of the prrF genes allows for expression of a third sRNA, PrrH, which is predicted to regulate gene expression through its unique sequence derived from the prrF1-prrF2 intergenic (IG) sequence (the PrrHIG sequence). Previous studies showed that the prrF locus is required for acute lung infection. However, the individual functions of the PrrF and PrrH sRNAs were not determined. Here, we describe a system for differentiating PrrF and PrrH functions by deleting the PrrHIG sequence [prrF(ΔHIG)]. Our analyses of this construct indicate that the PrrF sRNAs, but not PrrH, are required for acute lung infection by P. aeruginosa. Moreover, we show that the virulence defect of the ΔprrF1-prrF2 mutant is due to decreased bacterial burden during acute lung infection. In vivo analysis of gene expression in lung homogenates shows that PrrF-mediated regulation of genes for iron-containing proteins is disrupted in the ΔprrF1-prrF2 mutant during infection, while the expression of genes that mediate PrrF-regulated PQS production are not affected by prrF deletion in vivo. Combined, these studies demonstrate that regulation of iron utilization plays a critical role in P. aeruginosa's ability to survive during infection.


2013 ◽  
Vol 81 (7) ◽  
pp. 2426-2436 ◽  
Author(s):  
Sushmita Mustafi ◽  
Nathalie Rivero ◽  
Joan C. Olson ◽  
Philip D. Stahl ◽  
M. Alejandro Barbieri

ABSTRACTPseudomonas aeruginosa, a Gram-negative opportunistic human pathogen, is a frequent cause of severe hospital-acquired infections. Effectors produced by the type III secretion system disrupt mammalian cell membrane trafficking and signaling and are integral to the establishment ofP. aeruginosainfection. One of these effectors, ExoS, ADP-ribosylates several host cell proteins, including Ras and Rab GTPases. In this study, we demonstrated that Rab5 plays a critical role during early stages ofP. aeruginosainvasion of J774-Eclone macrophages. We showed that live, but not heat-inactivated,P. aeruginosainhibited phagocytosis and that this occurred in conjunction with downregulation of Rab5 activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, and in J744-Eclone cells, ExoS ADP-ribosyltransferase activity caused a more severe inhibition of phagocytosis than ExoS Rho GTPase activity. Furthermore, we found that expression of Rin1, a Rab5 guanine exchange factor, but not Rabex5 and Rap6, partially reversed the inactivation of Rab5 during invasion of liveP. aeruginosa. These studies provide evidence that liveP. aeruginosacells are able to influence their rate of phagocytosis in macrophages by directly regulating activation of Rab5.


2016 ◽  
Vol 60 (4) ◽  
pp. 2516-2518 ◽  
Author(s):  
Simon Devos ◽  
Stephan Stremersch ◽  
Koen Raemdonck ◽  
Kevin Braeckmans ◽  
Bart Devreese

ABSTRACTThe treatment ofStenotrophomonas maltophiliainfection with β-lactam antibiotics leads to increased release of outer membrane vesicles (OMVs), which are packed with two chromosomally encoded β-lactamases. Here, we show that these β-lactamase–packed OMVs are capable of establishing extracellular β-lactam degradation. We also show that they dramatically increase the apparent MICs of imipenem and ticarcillin for the cohabituating speciesPseudomonas aeruginosaandBurkholderia cenocepacia.


mBio ◽  
2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Larry A. Gallagher ◽  
Jay Shendure ◽  
Colin Manoil

ABSTRACT We describe a deep-sequencing procedure for tracking large numbers of transposon mutants of Pseudomonas aeruginosa. The procedure employs a new Tn-seq methodology based on the generation and amplification of single-strand circles carrying transposon junction sequences (the Tn-seq circle method), a method which can be used with virtually any transposon. The procedure reliably identified more than 100,000 transposon insertions in a single experiment, providing near-saturation coverage of the genome. To test the effectiveness of the procedure for mutant identification, we screened for mutations reducing intrinsic resistance to the aminoglycoside antibiotic tobramycin. Intrinsic tobramycin resistance had been previously analyzed at genome scale using mutant-by-mutant screening and thus provided a benchmark for evaluating the new method. The new Tn-seq procedure identified 117 tobramycin resistance genes, the majority of which were then verified with individual mutants. The group of genes with the strongest mutant phenotypes included nearly all (13 of 14) of those with strong mutant phenotypes identified in the previous screening, as well as a nearly equal number of new genes. The results thus show the effectiveness of the Tn-seq method in defining the genetic basis of a complex resistance trait of P. aeruginosa and indicate that it can be used to analyze a variety of growth-related processes. IMPORTANCE Research progress in microbiology is technology limited in the sense that the analytical methods available dictate how questions are experimentally addressed and, to some extent, what questions are asked. This report describes a new transposon tracking procedure for defining the genetic basis of growth-related processes in Pseudomonas aeruginosa, an important bacterial pathogen. The method employs next-generation sequencing to monitor the makeup of mutant populations (Tn-seq) and has several potential advantages over other Tn-seq methodologies. The new method was validated through the analysis of a clinically relevant antibiotic resistance trait.


2020 ◽  
Vol 202 (16) ◽  
Author(s):  
Sammi Chung ◽  
Andrew J. Darwin

ABSTRACT Bacterial carboxyl-terminal processing proteases (CTPs) are widely conserved and have been linked to important processes, including signal transduction, cell wall metabolism, and virulence. However, the features that target proteins for CTP-dependent cleavage are unclear. Studies of the Escherichia coli CTP Prc suggested that it cleaves proteins with nonpolar and/or structurally unconstrained C termini, but it is not clear if this applies broadly. Pseudomonas aeruginosa has a divergent CTP, CtpA, which is required for virulence. CtpA works in complex with the outer membrane lipoprotein LbcA to degrade cell wall hydrolases. In this study, we investigated if the C termini of two nonhomologous CtpA substrates are important for their degradation. We determined that these substrates have extended C termini compared to those of their closest E. coli homologs. Removing 7 amino acids from these extensions was sufficient to reduce their degradation by CtpA both in vivo and in vitro. Degradation of one truncated substrate was restored by adding the C terminus from the other but not by adding an unrelated sequence. However, modification of the C termini of nonsubstrates, by adding the C-terminal amino acids from a substrate, did not cause their degradation by CtpA. Therefore, the C termini of CtpA substrates are required but not sufficient for their efficient degradation. Although C-terminal truncated substrates were protected from degradation, they still associated with the LbcA-CtpA complex in vivo. Therefore, degradation of a protein by CtpA requires a C terminus-independent interaction with the LbcA-CtpA complex, followed by C terminus-dependent degradation, perhaps because CtpA normally initiates cleavage at a C-terminal site. IMPORTANCE Carboxyl-terminal processing proteases (CTPs) are found in all three domains of life, but exactly how they work is poorly understood, including how they recognize substrates. Bacterial CTPs have been associated with virulence, including CtpA of Pseudomonas aeruginosa, which works in complex with the outer membrane lipoprotein LbcA to degrade potentially dangerous peptidoglycan hydrolases. We report an important advance by revealing that efficient degradation by CtpA requires at least two separable phenomena and that one of them depends on information encoded in the substrate C terminus. A C terminus-independent association with the LbcA-CtpA complex is followed by C terminus-dependent cleavage by CtpA. Increased understanding of how CTPs target proteins is significant, due to their links to virulence, peptidoglycan remodeling, and other important processes.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Hélène Puja ◽  
Arnaud Bolard ◽  
Aurélie Noguès ◽  
Patrick Plésiat ◽  
Katy Jeannot

ABSTRACT The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors.


Sign in / Sign up

Export Citation Format

Share Document