scholarly journals Novel Conserved Assembly Factor of the Bacterial Flagellum

2006 ◽  
Vol 188 (21) ◽  
pp. 7700-7706 ◽  
Author(s):  
Björn Titz ◽  
Seesandra V. Rajagopala ◽  
Claudia Ester ◽  
Roman Häuser ◽  
Peter Uetz

ABSTRACT TP0658 (FliW) and its orthologs, conserved proteins of unknown function in Treponema pallidum and other species, interact with a C-terminal region of flagellin (FlaB1-3 in T. pallidum; FliC in most other species). Mutants of orthologs in Bacillus subtilis and Campylobacter jejuni (yviF, CJ1075) showed strongly reduced motility. TP0658 stabilizes flagellin in a way similar to FliS, suggesting that TP0658 is a conserved assembly factor for the bacterial flagellum.

2019 ◽  
Author(s):  
Natalie S. Al-Otaibi ◽  
Aidan J. Taylor ◽  
Daniel P. Farrell ◽  
Svetomir B. Tzokov ◽  
Frank DiMaio ◽  
...  

AbstractThe bacterial flagellum is a remarkable molecular motor, present at the surface of many bacteria, whose primary function is to allow motility through the rotation of a long filament protruding from the bacterial cell. A cap complex, consisting of an oligomeric assembly of the protein FliD, is localized at the tip of the flagellum, and is essential for filament assembly, as well as adherence to surfaces in some bacteria. However, the structure of the intact cap complex, and the molecular basis for its interaction with the filament, remains elusive. Here we report the cryo-EM structure of the Campylobacter jejuni cap complex. This structure reveals that FliD is pentameric, with the N-terminal region of the protomer forming an unexpected extensive set of contacts across several subunits, that contribute to FliD oligomerization. We also demonstrate that the native C. jejuni flagellum filament is 11-stranded and propose a molecular model for the filament-cap interaction.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Robert S. Brzozowski ◽  
Brooke R. Tomlinson ◽  
Michael D. Sacco ◽  
Judy J. Chen ◽  
Anika N. Ali ◽  
...  

ABSTRACT Although many bacterial cell division factors have been uncovered over the years, evidence from recent studies points to the existence of yet-to-be-discovered factors involved in cell division regulation. Thus, it is important to identify factors and conditions that regulate cell division to obtain a better understanding of this fundamental biological process. We recently reported that in the Gram-positive organisms Bacillus subtilis and Staphylococcus aureus, increased production of YpsA resulted in cell division inhibition. In this study, we isolated spontaneous suppressor mutations to uncover critical residues of YpsA and the pathways through which YpsA may exert its function. Using this technique, we were able to isolate four unique intragenic suppressor mutations in ypsA (E55D, P79L, R111P, and G132E) that rendered the mutated YpsA nontoxic upon overproduction. We also isolated an extragenic suppressor mutation in yfhS, a gene that encodes a protein of unknown function. Subsequent analysis confirmed that cells lacking yfhS were unable to undergo filamentation in response to YpsA overproduction. We also serendipitously discovered that YfhS may play a role in cell size regulation. Finally, we provide evidence showing a mechanistic link between YpsA and YfhS. IMPORTANCE Bacillus subtilis is a rod-shaped Gram-positive model organism. The factors fundamental to the maintenance of cell shape and cell division are of major interest. We show that increased expression of ypsA results in cell division inhibition and impairment of colony formation on solid medium. Colonies that do arise possess compensatory suppressor mutations. We have isolated multiple intragenic (within ypsA) mutants and an extragenic suppressor mutant. Further analysis of the extragenic suppressor mutation led to a protein of unknown function, YfhS, which appears to play a role in regulating cell size. In addition to confirming that the cell division phenotype associated with YpsA is disrupted in a yfhS-null strain, we also discovered that the cell size phenotype of the yfhS knockout mutant is abolished in a strain that also lacks ypsA. This highlights a potential mechanistic link between these two proteins; however, the underlying molecular mechanism remains to be elucidated.


2005 ◽  
Vol 71 (8) ◽  
pp. 4185-4190 ◽  
Author(s):  
Alex Yeow-Lim Teo ◽  
Hai-Meng Tan

ABSTRACT The objectives of this study were to isolate beneficial strains of microorganisms from the gastrointestinal tracts of healthy chickens and to screen them against Clostridium perfringens, a causative agent of necrotic enteritis in poultry. One of the bacteria isolated, a strain of Bacillus subtilis, was found to possess an anticlostridial factor that could inhibit the C. perfringens ATCC 13124 used in this study. The anticlostridial factor produced by B. subtilis PB6 was found to be fully or partially inactivated in the presence of pronase, trypsin, and pepsin. In contrast, the antimicrobial activity of the anticlostridial factor was not affected by treatment at 100 or 121°C or by treatment with any of the organic solvents used in the study. The optimum growth temperature and optimum pH for production of the anticlostridial factor were 37°C and 6.20, respectively. Using the mass spectroscopy-mass spectroscopy technique, the apparent molecular mass of the anticlostridial factor was estimated to be in the range from 960 to 983 Da. In terms of the antimicrobial spectrum, the anticlostridial factor was inhibitory toward various strains of C. perfringens implicated in necrotic enteritis in poultry, Clostridium difficile, Streptococcus pneumoniae, Campylobacter jejuni, and Campylobacter coli.


2021 ◽  
Author(s):  
Seiji Kojima ◽  
Hiroki Kajino ◽  
Keiichi Hirano ◽  
Yuna Inoue ◽  
Hiroyuki Terashima ◽  
...  

AbstractThe MS ring is a part of the flagellar basal body and formed by 34 subunits of FliF, which consists of a large periplasmic region and two transmembrane segments connected to the N- and C-terminal regions facing the cytoplasm. A cytoplasmic protein, FlhF, which determines the position and number of the basal body, supports MS ring formation in the membrane. In this study, we constructed FliF deletion mutants that lack 30 or 50 residues at the N-terminus (ΔN30 and ΔN50), and 83 (ΔC83) or 110 residues (ΔC110) at the C-terminus. The N-terminal deletions were functional and conferred motility of Vibrio cells, whereas the C-terminal deletions were nonfunctional. The mutants were expressed in Escherichia coli to determine whether an MS ring could still be assembled. When co-expressing ΔN30FliF or ΔN50FliF with FlhF, fewer MS rings were observed than with the expression of wild-type FliF, in the MS ring fraction, suggesting that the N-terminus interacts with FlhF. MS ring formation is probably inefficient without an additional factor or FlhF. The deletion of the C-terminal cytoplasmic region did not affect the ability of FliF to form an MS ring because a similar number of MS rings were observed for ΔC83FliF as with wild-type FliF, although further deletion of the second transmembrane segment (ΔC110FliF) abolished it. These results suggest that the terminal regions of FliF have distinct roles; the N-terminal region for efficient MS ring formation and the C-terminal region for MS ring function. The second transmembrane segment is indispensable for MS ring assembly.ImportanceThe bacterial flagellum is a supramolecular architecture involved in cell motility. At the base of the flagella, a rotary motor that begins to construct an MS ring in the cytoplasmic membrane comprises 34 transmembrane proteins (FliF). Here, we investigated the roles of the N and C terminal regions of FliF, which are MS rings. Unexpectedly, the cytoplasmic regions of FliF are not indispensable for the formation of the MS ring, but the N-terminus appears to assist in ring formation through recruitment of FlhF, which is essential for flagellar formation. The C-terminus is essential for motor formation or function.


Microbiology ◽  
2004 ◽  
Vol 150 (2) ◽  
pp. 415-425 ◽  
Author(s):  
Jenny Bengtsson ◽  
Claes von Wachenfeldt ◽  
Lena Winstedt ◽  
Per Nygaard ◽  
Lars Hederstedt

The Gram-positive bacterium Bacillus subtilis contains two respiratory oxidases of the haem-copper superfamily: cytochrome aa 3, which is a quinol oxidase, and cytochrome caa 3, which is a cytochrome c oxidase. Cytochrome c oxidase uniquely contains a di-copper centre, CuA. B. subtilis CtaG is a membrane protein encoded by the same gene cluster as that which encodes the subunits of cytochrome c oxidase. The role of B. subtilis CtaG and orthologous proteins present in many other Gram-positive bacteria has remained unexplored. The sequence of CtaG is unrelated to that of CtaG/Cox11p of proteobacteria and eukaryotic cells. This study shows that B. subtilis CtaG is essential for the formation of active cytochrome caa 3 but is not required for assembly of the core subunits I and II with haem in the membrane and it has no role in the synthesis of active cytochrome aa 3. B. subtilis YpmQ, a homologue to Sco1p of eukaryotic cells, is also a membrane-bound cytochrome c oxidase-specific assembly factor. Properties of CtaG- and YpmQ-deficient mutants were compared. Cells lacking YpmQ showed a low cytochrome c oxidase activity and this defect was suppressed by the supplementation of the growth medium with copper ions. It has previously been proposed that YpmQ/Sco1p is involved in synthesis of the CuA centre. The results of this study are consistent with this proposal but the exact role of YpmQ in assembly of cytochrome c oxidase remains to be elucidated.


2019 ◽  
Vol 201 (8) ◽  
Author(s):  
Michael D. Manson

ABSTRACT The cytoplasmic C ring of the bacterial flagellum is known as the switch complex. It binds the response regulator phospho-CheY to control the direction of flagellar rotation. The C ring of enteric bacteria is well characterized. However, no Gram-positive switch complex had been modeled. Ward et al. (E. Ward, E. A. Kim, J. Panushka, T. Botelho, et al., J Bacteriol 201:e00626-18, 2019, https://doi.org/10.1128/JB.00626-18) propose a structure for the Bacillus subtilis switch complex based on extensive biochemical studies. The work demonstrates that a similar architecture can accommodate different proteins and a reversed signaling logic.


2005 ◽  
Vol 71 (3) ◽  
pp. 1223-1230 ◽  
Author(s):  
Richard van Kranenburg ◽  
Natasa Golic ◽  
Roger Bongers ◽  
Rob J. Leer ◽  
Willem M. de Vos ◽  
...  

ABSTRACT Lactobacillus plantarum WCFS1 harbors three plasmids, pWCFS101, pWCFS102, and pWCFS103, with sizes of 1,917, 2,365, and 36,069 bp, respectively. The two smaller plasmids are of unknown function and contain replication genes that are likely to function via the rolling-circle replication mechanism. The host range of the pWCFS101 replicon includes Lactobacillus species and Lactococcus lactis, while that of the pWCFS102 replicon also includes Carnobacterium maltaromaticum and Bacillus subtilis. The larger plasmid is predicted to replicate via the theta-type mechanism. The host range of its replicon seems restricted to L. plantarum. Cloning vectors were constructed based on the replicons of all three plasmids. Plasmid pWCFS103 was demonstrated to be a conjugative plasmid, as it could be transferred to L. plantarum NC8. It confers arsenate and arsenite resistance, which can be used as selective markers.


Sign in / Sign up

Export Citation Format

Share Document