scholarly journals Role of the C-Terminal Cytoplasmic Domain of FlhA in Bacterial Flagellar Type III Protein Export

2010 ◽  
Vol 192 (7) ◽  
pp. 1929-1936 ◽  
Author(s):  
Tohru Minamino ◽  
Masafumi Shimada ◽  
Mayuko Okabe ◽  
Yumiko Saijo-Hamano ◽  
Katsumi Imada ◽  
...  

ABSTRACT For construction of the bacterial flagellum, many of the flagellar proteins are exported into the central channel of the flagellar structure by the flagellar type III protein export apparatus. FlhA and FlhB, which are integral membrane proteins of the export apparatus, form a docking platform for the soluble components of the export apparatus, FliH, FliI, and FliJ. The C-terminal cytoplasmic domain of FlhA (FlhAC) is required for protein export, but it is not clear how it works. Here, we analyzed a temperature-sensitive Salmonella enterica mutant, the flhA(G368C) mutant, which has a mutation in the sequence encoding FlhAC. The G368C mutation did not eliminate the interactions with FliH, FliI, FliJ, and the C-terminal cytoplasmic domain of FlhB, suggesting that the mutation blocks the export process after the FliH-FliI-FliJ-export substrate complex binds to the FlhA-FlhB platform. Limited proteolysis showed that FlhAC consists of at least three subdomains, a flexible linker, FlhACN, and FlhACC, and that FlhACN becomes sensitive to proteolysis by the G368C mutation. Intragenic suppressor mutations were identified in these subdomains and restored flagellar protein export to a considerable degree. However, none of these suppressor mutations suppressed the protease sensitivity. We suggest that FlhAC not only forms part of the docking platform for the FliH-FliI-FliJ-export substrate complex but also is directly involved in the translocation of the export substrate into the central channel of the growing flagellar structure.

2010 ◽  
Vol 76 (1) ◽  
pp. 260-268 ◽  
Author(s):  
Yumiko Saijo-Hamano ◽  
Katsumi Imada ◽  
Tohru Minamino ◽  
May Kihara ◽  
Masafumi Shimada ◽  
...  

1998 ◽  
Vol 124 (2-3) ◽  
pp. 104-114 ◽  
Author(s):  
Hirofumi Suzuki ◽  
Koji Yonekura ◽  
Kazuyoshi Murata ◽  
Teruhisa Hirai ◽  
Kenji Oosawa ◽  
...  

Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1675-1695 ◽  
Author(s):  
Frans E Tax ◽  
James H Thomas ◽  
Edwin L Ferguson ◽  
H Robert Horvitzt

Abstract We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-l7, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup1 7 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup1 7and lag-2, suggest that both genes act at approximately the same time as lin-12in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.


1990 ◽  
Vol 10 (5) ◽  
pp. 1908-1914
Author(s):  
C Martin ◽  
S Okamura ◽  
R Young

The two large subunits of RNA polymerase II, RPB1 and RPB2, contain regions of extensive homology to the two large subunits of Escherichia coli RNA polymerase. These homologous regions may represent separate protein domains with unique functions. We investigated whether suppressor genetics could provide evidence for interactions between specific segments of RPB1 and RPB2 in Saccharomyces cerevisiae. A plasmid shuffle method was used to screen thoroughly for mutations in RPB2 that suppress a temperature-sensitive mutation, rpb1-1, which is located in region H of RPB1. All six RPB2 mutations that suppress rpb1-1 were clustered in region I of RPB2. The location of these mutations and the observation that they were allele specific for suppression of rpb1-1 suggests an interaction between region H of RPB1 and region I of RPB2. A similar experiment was done to isolate and map mutations in RPB1 that suppress a temperature-sensitive mutation, rpb2-2, which occurs in region I of RPB2. These suppressor mutations were not clustered in a particular region. Thus, fine structure suppressor genetics can provide evidence for interactions between specific segments of two proteins, but the results of this type of analysis can depend on the conditional mutation to be suppressed.


Sign in / Sign up

Export Citation Format

Share Document