scholarly journals Nitric Oxide in Chemostat-Cultured Escherichia coli Is Sensed by Fnr and Other Global Regulators: Unaltered Methionine Biosynthesis Indicates Lack of S Nitrosation

2006 ◽  
Vol 189 (5) ◽  
pp. 1845-1855 ◽  
Author(s):  
Steven T. Pullan ◽  
Mark D. Gidley ◽  
Richard A. Jones ◽  
Jason Barrett ◽  
Tania M. Stevanin ◽  
...  

ABSTRACT We previously elucidated the global transcriptional responses of Escherichia coli to the nitrosating agent S-nitrosoglutathione (GSNO) in both aerobic and anaerobic chemostats, demonstrated the expression of nitric oxide (NO)-protective mechanisms, and obtained evidence of critical thiol nitrosation. The present study was the first to examine the transcriptome of NO-exposed E. coli in a chemostat. Using identical conditions, we compared the GSNO stimulon with the stimulon of NO released from two NO donor compounds {3-[2-hydroxy-1-(1-methyl-ethyl)-2-nitrosohydrazino]-1-propanamine (NOC-5) and 3-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-propanamine (NOC-7)} simultaneously and demonstrated that there were marked differences in the transcriptional responses to these distinct nitrosative stresses. Exposure to NO did not induce met genes, suggesting that, unlike GSNO, NO does not elicit homocysteine S nitrosation and compensatory increases in methionine biosynthesis. After entry into cells, exogenous methionine provided protection from GSNO-mediated killing but not from NO-mediated killing. Anaerobic exposure to NO led to up-regulation of multiple Fnr-repressed genes and down-regulation of Fnr-activated genes, including nrfA, which encodes cytochrome c nitrite reductase, providing strong evidence that there is NO inactivation of Fnr. Other global regulators apparently affected by NO were IscR, Fur, SoxR, NsrR, and NorR. We tried to identify components of the NorR regulon by performing a microarray comparison of NO-exposed wild-type and norR mutant strains; only norVW, encoding the NO-detoxifying flavorubredoxin and its cognate reductase, were unambiguously identified. Mutation of norV or norR had no effect on E. coli survival in mouse macrophages. Thus, GSNO (a nitrosating agent) and NO have distinct cellular effects; NO more effectively interacts with global regulators that mediate adaptive responses to nitrosative stress but does not affect methionine requirements arising from homocysteine nitrosation.

2006 ◽  
Vol 34 (1) ◽  
pp. 200-202 ◽  
Author(s):  
S. Spiro

Exposure of Escherichia coli to nitric oxide (NO) or nitrosating agents causes significant changes in patterns of gene expression. Three recent studies have used microarrays to analyse the response of the E. coli transcriptome to NO and nitrosative stress. Drawing on the array data, I review our current understanding of the E. coli regulatory systems that are involved.


2021 ◽  
Author(s):  
Natalia Correa-Aragunde ◽  
Andrés Nejamkin ◽  
Fiorella Del Castello ◽  
Noelia Foresi ◽  
Lorenzo Lamattina

AbstractNitric oxide synthase (NOS) synthesizes NO from the substrate L-arginine (Arg). NOS with distinct biochemical properties were characterized from two photosynthetic microorganisms, the unicellular algae Ostreococcus tauri (OtNOS) and the cyanobacteria Synechococcus PCC 7335 (SyNOS). In this work we studied OtNOS and SyNOS recombinantly expressed in E. coli and analyzed bacterial growth and tolerance to nitrosative stress. Results show that the expression of OtNOS and SyNOS promotes bacterial growth and allows metabolizing Arg as N source. In accordance to a high NO producing activity, OtNOS expression induces the hmp flavohemoglobin in E. coli, suggesting that this strain is sensing nitrosative stress. The addition of 1 mM of the NO donor sodium nitroprusside (SNP) is toxic and generates a strong nitrosative stress. The expression of OtNOS or SyNOS reduced SNP toxicity restoring bacterial growth. Finally, using bioinformatic tools and ligand docking analyses, we propose tetrahydromonapterin (MH4), an endogenous pterin found in E. coli, as potential cofactor required for NOS catalytic activity. Our findings could be useful for the development of biotechnological applications using NOS expression to improve growth in bacteria.Key points- The NO synthase (NOS) from photosynthetic microorganisms were expressed in E. coli- Expression of NOS increases bacterial growth and tolerance to nitrosative stress.- Ligand docking analyses indicate tetrahydromonapterin (MH4) as potential NOS cofactor in E. coli.


2008 ◽  
Vol 190 (22) ◽  
pp. 7479-7490 ◽  
Author(s):  
Thithiwat May ◽  
Satoshi Okabe

ABSTRACT It has been shown that Escherichia coli harboring the derepressed IncFI and IncFII conjugative F plasmids form complex mature biofilms by using their F-pilus connections, whereas a plasmid-free strain forms only patchy biofilms. Therefore, in this study we investigated the contribution of a natural IncF conjugative F plasmid to the formation of E. coli biofilms. Unlike the presence of a derepressed F plasmid, the presence of a natural IncF F plasmid promoted biofilm formation by generating the cell-to-cell mating F pili between pairs of F+ cells (approximately two to four pili per cell) and by stimulating the formation of colanic acid and curli meshwork. Formation of colanic acid and curli was required after the initial deposition of F-pilus connections to generate a three-dimensional mushroom-type biofilm. In addition, we demonstrated that the conjugative factor of F plasmid, rather than a pilus synthesis function, was involved in curli production during biofilm formation, which promoted cell-surface interactions. Curli played an important role in the maturation process. Microarray experiments were performed to identify the genes involved in curli biosynthesis and regulation. The results suggested that a natural F plasmid was more likely an external activator that indirectly promoted curli production via bacterial regulatory systems (the EnvZ/OmpR two-component regulators and the RpoS and HN-S global regulators). These data provided new insights into the role of a natural F plasmid during the development of E. coli biofilms.


2019 ◽  
Vol 87 (9) ◽  
Author(s):  
Takeshi Shimizu ◽  
Akio Matsumoto ◽  
Masatoshi Noda

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) has at least three enzymes, NorV, Hmp, and Hcp, that act independently to lower the toxicity of nitric oxide (NO), a potent antimicrobial molecule. This study aimed to reveal the cooperative roles of these defensive enzymes in EHEC against nitrosative stress. Under anaerobic conditions, combined deletion of all three enzymes significantly increased the NO sensitivity of EHEC determined by the growth at late stationary phase; however, the expression of norV restored the NO resistance of EHEC. On the other hand, the growth of Δhmp mutant EHEC was inhibited after early stationary phase, indicating that NorV and Hmp play a cooperative role in anaerobic growth. Under microaerobic conditions, the growth of Δhmp mutant EHEC was inhibited by NO, indicating that Hmp is the enzyme that protects cells from NO stress under microaerobic conditions. When EHEC cells were exposed to a lower concentration of NO, the NO level in bacterial cells of Δhcp mutant EHEC was higher than those of the other EHEC mutants, suggesting that Hcp is effective at regulating NO levels only at a low concentration. These findings of a low level of NO in bacterial cells with hcp indicate that the NO consumption activity of Hcp was suppressed by Hmp at a low range of NO concentrations. Taken together, these results show that the cooperative effects of NO-metabolizing enzymes are regulated by the range of NO concentrations to which the EHEC cells are exposed.


2006 ◽  
Vol 188 (3) ◽  
pp. 874-881 ◽  
Author(s):  
Diane M. Bodenmiller ◽  
Stephen Spiro

ABSTRACT Microarray studies of the Escherichia coli response to nitric oxide and nitrosative stress have suggested that additional transcriptional regulators of this response remain to be characterized. We identify here the product of the yjeB gene as a negative regulator of the transcription of the ytfE, hmpA and ygbA genes, all of which are known to be upregulated by nitrosative stress. Transcriptional fusions to the promoters of these genes were expressed constitutively in a yjeB mutant, indicating that all three are targets for repression by YjeB. An inverted repeat sequence that overlaps the −10 element of all three promoters is proposed to be a binding site for the YjeB protein. A similar inverted repeat sequence was identified in the tehA promoter, which is also known to be sensitive to nitrosative stress. The ytfE, hmpA, ygbA, and tehA promoters all caused derepression of a ytfE-lacZ transcriptional fusion when present in the cell in multiple copies, presumably by a repressor titration effect, suggesting the presence of functional YjeB binding sites in these promoters. However, YjeB regulation of tehA was weak, as judged by the activity of a tehA-lacZ fusion, perhaps because YjeB repression of tehA is masked by other regulatory mechanisms. Promoters regulated by YjeB could be derepressed by iron limitation, which is consistent with an iron requirement for YjeB activity. The YjeB protein is a member of the Rrf2 family of transcriptional repressors and shares three conserved cysteine residues with its closest relatives. We propose a regulatory model in which the YjeB repressor is directly sensitive to nitrosative stress. On the basis of similarity to the nitrite-responsive repressor NsrR from Nitrosomonas europaea, we propose that the yjeB gene of E. coli be renamed nsrR.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
James P. R. Connolly ◽  
Natasha C. A. Turner ◽  
Jennifer C. Hallam ◽  
Patricia T. Rimbi ◽  
Tom Flett ◽  
...  

Appropriate interpretation of environmental signals facilitates niche specificity in pathogenic bacteria. However, the responses of niche-specific pathogens to common host signals are poorly understood. d-Serine (d-ser) is a toxic metabolite present in highly variable concentrations at different colonization sites within the human host that we previously found is capable of inducing changes in gene expression. In this study, we made the striking observation that the global transcriptional response of three Escherichia coli pathotypes – enterohaemorrhagic E. coli (EHEC), uropathogenic E. coli (UPEC) and neonatal meningitis-associated E. coli (NMEC) – to d-ser was highly distinct. In fact, we identified no single differentially expressed gene common to all three strains. We observed the induction of ribosome-associated genes in extraintestinal pathogens UPEC and NMEC only, and the induction of purine metabolism genes in gut-restricted EHEC, and UPEC indicating distinct transcriptional responses to a common signal. UPEC and NMEC encode dsdCXA – a genetic locus required for detoxification and hence normal growth in the presence of d-ser. Specific transcriptional responses were induced in strains accumulating d-ser (WT EHEC and UPEC/NMEC mutants lacking the d-ser-responsive transcriptional activator DsdC), corroborating the notion that d-ser is an unfavourable metabolite if not metabolized. Importantly, many of the UPEC-associated transcriptome alterations correlate with published data on the urinary transcriptome, supporting the hypothesis that d-ser sensing forms a key part of urinary niche adaptation in this pathotype. Collectively, our results demonstrate distinct pleiotropic responses to a common metabolite in diverse E. coli pathotypes, with important implications for niche selectivity.


2006 ◽  
Vol 188 (3) ◽  
pp. 928-933 ◽  
Author(s):  
Jean M. Bower ◽  
Matthew A. Mulvey

ABSTRACT During the course of a urinary tract infection, substantial levels of nitric oxide and reactive nitrogen intermediates are generated. We have found that many uropathogenic strains of Escherichia coli display far greater resistance to nitrosative stress than the K-12 reference strain MG1655. By selecting and screening for uropathogenic E. coli transposon mutants that are unable to grow in the presence of acidified nitrite, the cadC gene product was identified as a key facilitator of nitrosative stress resistance. Mutation of cadC, or its transcriptional targets cadA and cadB, results in loss of significant production of the polyamine cadaverine and increased sensitivity to acidified nitrite. Exogenous addition of cadaverine or other polyamines rescues growth of cad mutants under nitrosative stress. In wild-type cells, the concentration of cadaverine produced per cell is substantially increased by exposure to acidified nitrite. The mechanism behind polyamine-mediated rescue from nitrosative stress is unclear, but it is not attributable solely to chemical quenching of reactive nitrogen species or reduction in mutation frequency.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 190
Author(s):  
Muhammad Shahid ◽  
Qari Imran ◽  
Adil Hussain ◽  
Murtaza Khan ◽  
Sang Lee ◽  
...  

Plant stem cells are pluripotent cells that have diverse applications in regenerative biology and medicine. However, their roles in plant growth and disease resistance are often overlooked. Using high-throughput RNA-seq data, we identified approximately 20 stem cell-related differentially expressed genes (DEGs) that were responsive to the nitric oxide (NO) donor S-nitrosocysteine (CySNO) after six hours of infiltration. Among these DEGs, the highest number of positive correlations (R ≥ 0.8) was observed for CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) 12. Gene ontology (GO) terms for molecular function showed DEGs associated with signal transduction and receptor activity. A promoter study of these DEGs showed the presence of cis-acting elements that are involved in growth as well as the regulation of abiotic and biotic stress. Phylogenetic analysis of the Arabidopsis stem cell-related genes and their common orthologs in rice, soybean, poplar, and tomato suggested that most soybean stem cell-related genes were grouped with the Arabidopsis CLE type of stem cell genes, while the rice stem cell-related genes were grouped with the Arabidopsis receptor-like proteins. The functional genomic-based characterization of the role of stem cell DEGs showed that under control conditions, the clv1 mutant showed a similar phenotype to that of the wild-type (WT) plants; however, under CySNO-mediated nitrosative stress, clv1 showed increased shoot and root length compared to WT. Furthermore, the inoculation of clv1 with virulent Pst DC3000 showed a resistant phenotype with fewer pathogens growing at early time points. The qRT-PCR validation and correlation with the RNA-seq data showed a Pearson correlation coefficient of >0.8, indicating the significantly high reliability of the RNA-seq analysis.


2009 ◽  
Vol 77 (8) ◽  
pp. 3312-3319 ◽  
Author(s):  
Te I. Weng ◽  
Hsiao Yi Wu ◽  
Pei Ying Lin ◽  
Shing Hwa Liu

ABSTRACT Escherichia coli is the most common cause of urinary tract infection. Elevated blood and urine interleukin-6 (IL-6) levels have been shown in inflammatory urinary tract diseases. The role of IL-6 in mediating the urodynamic dysfunction in response to E. coli-induced urinary tract infection has not yet been fully elucidated. In this study, we investigated the role of IL-6 in the nitric oxide (NO)-triggered alteration of contractile responses in the urinary bladder under an E. coli-induced inflammatory condition. The electrical field stimulation (EFS)-evoked contractions of the isolated detrusor strips, and immunoblotting for detecting protein expression in the bladders was measured short term (1 h) or long term (6 or 24 h) after intraperitoneal injection of E. coli endotoxin (lipopolysaccharide [LPS]) or intravesical instillation of human pyelonephritogenic E. coli-J96 (O4:K6) strain or LPS into mice. IL-6 and NO productions were increased in the urinary bladders of mice 1 to 24 h after LPS or E. coli-J96 treatment. Inducible NO synthase (iNOS) expression and protein kinase C (PKC) activation and EFS-evoked detrusor contractions were increased in the bladders at 6 h after LPS or E. coli-J96 treatment, which could be reversed by anti-IL-6 antibody and iNOS inhibitor aminoguanidine. At 1 h after LPS administration, bladder NO generation, endothelial NOS expression, and EFS-evoked detrusor contractions were effectively increased, whereas anti-IL-6 antibody could not reverse these LPS-induced responses. These results indicate that IL-6 may play an important role in the iNOS/NO-triggered PKC-activated contractile response in urinary bladder during E. coli or LPS-induced inflammation.


Sign in / Sign up

Export Citation Format

Share Document