scholarly journals Identification of Two Gene Clusters and a Transcriptional Regulator Required for Pseudomonas aeruginosa Glycine Betaine Catabolism

2007 ◽  
Vol 190 (8) ◽  
pp. 2690-2699 ◽  
Author(s):  
Matthew J. Wargo ◽  
Benjamin S. Szwergold ◽  
Deborah A. Hogan

ABSTRACT Glycine betaine (GB), which occurs freely in the environment and is an intermediate in the catabolism of choline and carnitine, can serve as a sole source of carbon or nitrogen in Pseudomonas aeruginosa. Twelve mutants defective in growth on GB as the sole carbon source were identified through a genetic screen of a nonredundant PA14 transposon mutant library. Further growth experiments showed that strains with mutations in two genes, gbcA (PA5410) and gbcB (PA5411), were capable of growth on dimethylglycine (DMG), a catabolic product of GB, but not on GB itself. Subsequent nuclear magnetic resonance (NMR) experiments with 1,2-13C-labeled choline indicated that these genes are necessary for conversion of GB to DMG. Similar experiments showed that strains with mutations in the dgcAB (PA5398-PA5399) genes, which exhibit homology to genes that encode other enzymes with demethylase activity, are required for the conversion of DMG to sarcosine. Mutant analyses and 13C NMR studies also confirmed that the soxBDAG genes, predicted to encode a sarcosine oxidase, are required for sarcosine catabolism. Our screen also identified a predicted AraC family transcriptional regulator, encoded by gbdR (PA5380), that is required for growth on GB and DMG and for the induction of gbcA, gbcB, and dgcAB in response to GB or DMG. Mutants defective in the previously described gbt gene (PA3082) grew on GB with kinetics similar to those of the wild type in both the PAO1 and PA14 strain backgrounds. These studies provided important insight into both the mechanism and the regulation of the catabolism of GB in P. aeruginosa.

2017 ◽  
Author(s):  
Natalia M. Vior ◽  
Rodney Lacret ◽  
Govind Chandra ◽  
Siobhán Dorai-Raj ◽  
Martin Trick ◽  
...  

ABSTRACTBicyclomycin (BCM) is a clinically promising antibiotic that is biosynthesised byStreptomyces cinnamoneusDSM 41675. BCM is structurally characterized by a core cyclo(L-Ile-L-Leu) 2,5-diketopiperazine (DKP) that is extensively oxidized. Here, we identify the BCM biosynthetic gene cluster, which shows that the core of BCM is biosynthesised by a cyclodipeptide synthase and the oxidative modifications are introduced by five 2-oxoglutarate-dependent dioxygenases and one cytochrome P450 monooxygenase. The discovery of the gene cluster enabled the identification of BCM pathways encoded in the genomes of hundreds ofPseudomonas aeruginosaisolates distributed globally, and heterologous expression of the pathway fromP. aeruginosaSCV20265 demonstrated that the product is chemically identical to BCM produced byS. cinnamoneus. Overall, putative BCM gene clusters have been found in at least seven genera spanningActinobacteriaandProteobacteria(Alpha-, Beta-andGamma-). This represents a rare example of horizontal gene transfer of an intact biosynthetic gene cluster across such distantly related bacteria, and we show that these gene clusters are almost always associated with mobile genetic elements.IMPORTANCEBicyclomycin is the only natural product antibiotic that selectively inhibits the transcription termination factor Rho. This mechanism of action, combined with its proven biological safety and its activity against clinically relevant Gram-negative bacterial pathogens, makes it a very promising antibiotic candidate. Here, we report the identification of the bicyclomycin biosynthetic gene cluster in the known producing organismStreptomyces cinnamoneus, which will enable the engineered production of new bicyclomycin derivatives. The identification of this gene cluster also led to the discovery of hundreds of bicyclomycin pathways encoded in highly diverse bacteria, including the opportunistic pathogenPseudomonas aeruginosa. This wide distribution of a complex biosynthetic pathway is very unusual, and provides an insight into how a pathway for an antibiotic can be transferred between diverse bacteria.


Author(s):  
Pawan Kumar Jayaswal ◽  
Asheesh Shanker ◽  
Nagendra Kumar Singh

Actin and tubulin are cytoskeleton proteins, which are important components of the celland are conserved across species. Despite their crucial significance in cell motility and cell division the distribution and phylogeny of actin and tubulin genes across taxa is poorly understood. Here we used publicly available genomic data of 49 model species of plants, animals, fungi and Protista for further understanding the distribution of these genes among diverse eukaryotic species using rice as reference. The highest numbers of rice actin and tubulin gene homologs were present in plants followed by animals, fungi and Protista species, whereas ten actin and nine tubulin genes were conserved in all 49 species. Phylogenetic analysis of 19 actin and 18 tubulin genes clustered them into four major groups each. One each of the actin and tubulin gene clusters was conserved across eukaryotic species. Species trees based on the conserved actin and tubulin genes showed evolutionary relationship of 49 different taxa clustered into plants, animals, fungi and Protista. This study provides a phylogenetic insight into the evolution of actin and tubulin genes in diverse eukaryotic species.


1999 ◽  
Vol 23 (3) ◽  
pp. 202-203
Author(s):  
Daniel A. Fletcher ◽  
Brian G. Gowenlock ◽  
Keith G. Orrell ◽  
David C. Apperley ◽  
Michael B. Hursthouse ◽  
...  

Solid-state and solution 13C NMR data for the monomers and dimers of 3- and 4-substituted nitrosobenzenes, and the crystal structure of E-(4-CIC6H4NO)2 are reported.


Microbiology ◽  
2009 ◽  
Vol 155 (3) ◽  
pp. 712-723 ◽  
Author(s):  
Valérie Dekimpe ◽  
Eric Déziel

Pseudomonas aeruginosa uses the two major quorum-sensing (QS) regulatory systems las and rhl to modulate the expression of many of its virulence factors. The las system is considered to stand at the top of the QS hierarchy. However, some virulence factors such as pyocyanin have been reported to still be produced in lasR mutants under certain conditions. Interestingly, such mutants arise spontaneously under various conditions, including in the airways of cystic fibrosis patients. Using transcriptional lacZ reporters, LC/MS quantification and phenotypic assays, we have investigated the regulation of QS-controlled factors by the las system. Our results show that activity of the rhl system is only delayed in a lasR mutant, thus allowing the expression of multiple virulence determinants such as pyocyanin, rhamnolipids and C4-homoserine lactone (HSL) during the late stationary phase. Moreover, at this stage, RhlR is able to overcome the absence of the las system by activating specific LasR-controlled functions, including production of 3-oxo-C12-HSL and Pseudomonas quinolone signal (PQS). P. aeruginosa is thus able to circumvent the deficiency of one of its QS systems by allowing the other to take over. This work demonstrates that the QS hierarchy is more complex than the model simply presenting the las system above the rhl system.


2017 ◽  
Vol 307 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Elza Okon ◽  
Sarah Dethlefsen ◽  
Anna Pelnikevich ◽  
Andrea van Barneveld ◽  
Antje Munder ◽  
...  

1989 ◽  
Vol 81-82 ◽  
pp. 187-194 ◽  
Author(s):  
R. Fründ ◽  
H.-D. Lüdemann ◽  
F.J. Gonzalez-Vila ◽  
G. Almendros ◽  
J.C. del Rio ◽  
...  

2004 ◽  
Vol 186 (9) ◽  
pp. 2880-2890 ◽  
Author(s):  
Isabelle Vallet ◽  
Stephen P. Diggle ◽  
Rachael E. Stacey ◽  
Miguel Cámara ◽  
Isabelle Ventre ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic bacterial pathogen which poses a major threat to long-term-hospitalized patients and individuals with cystic fibrosis. The capacity of P. aeruginosa to form biofilms is an important requirement for chronic colonization of human tissues and for persistence in implanted medical devices. Various stages of biofilm formation by this organism are mediated by extracellular appendages, such as type IV pili and flagella. Recently, we identified three P. aeruginosa gene clusters that were termed cup (chaperone-usher pathway) based on their sequence relatedness to the chaperone-usher fimbrial assembly pathway in other bacteria. The cupA gene cluster, but not the cupB or cupC cluster, is required for biofilm formation on abiotic surfaces. In this study, we identified a gene (mvaT) encoding a negative regulator of cupA expression. Such regulatory control was confirmed by several approaches, including lacZ transcriptional fusions, Northern blotting, and transcriptional profiling using DNA microarrays. MvaT also represses the expression of the cupB and cupC genes, although the extent of the regulatory effect is not as pronounced as with cupA. Consistent with this finding, mvaT mutants exhibit enhanced biofilm formation. Although the P. aeruginosa genome contains a highly homologous gene, mvaU, the repression of cupA genes is MvaT specific. Thus, MvaT appears to be an important regulatory component within a complex network that controls biofilm formation and maturation in P. aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document