scholarly journals Cytochromec551and the CytochromecMaturation Pathway Affect Virulence Gene Expression in Bacillus cereus ATCC 14579

2014 ◽  
Vol 197 (3) ◽  
pp. 626-635 ◽  
Author(s):  
Hesong Han ◽  
Thomas Sullivan ◽  
Adam C. Wilson

Loss of the cytochromecmaturation system inBacillus cereusresults in increased transcription of the major enterotoxin genesnhe,hbl, andcytKand the virulence regulatorplcR. Increased virulence factor production occurs at 37°C under aerobic conditions, similar to previous findings inBacillus anthracis. UnlikeB. anthracis, much of the increased virulence gene expression can be attributed to loss of onlyc551, one of the two smallc-type cytochromes. Additional virulence factor expression occurs with loss ofresBC, encoding cytochromecmaturation proteins, independently of the presence of thec-type cytochrome genes. Hemolytic activity of strains missing eithercccBorresBCis increased relative to that in the parental strain, while sporulation efficiency is unaffected in the mutants. Increased virulence gene expression in the ΔcccBand ΔresBCmutants occurs only in the presence of an intactplcRgene, indicating that this process is PlcR dependent. These findings suggest a new mode of regulation ofB. cereusvirulence and reveal intriguing similarities and differences in virulence regulation betweenB. cereusandB. anthracis.

mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
X. Renee Bina ◽  
Dawn L. Taylor ◽  
Amit Vikram ◽  
Vanessa M. Ante ◽  
James E. Bina

ABSTRACTVibrio choleraeis an aquatic organism that causes the severe acute diarrheal disease cholera. The ability ofV. choleraeto cause disease is dependent upon the production of two critical virulence determinants, cholera toxin (CT) and the toxin-coregulated pilus (TCP). The expression of the genes that encode for CT and TCP production is under the control of a hierarchical regulatory system called the ToxR regulon, which functions to activate virulence gene expression in response toin vivostimuli. Cyclic dipeptides have been found to be produced by numerous bacteria, yet their biological function remains unknown.V. choleraehas been shown to produce cyclo(Phe-Pro). Previous studies in our laboratory demonstrated that cyclo(Phe-Pro) inhibitedV. choleraevirulence factor production. For this study, we report on the mechanism by which cyclo(Phe-Pro) inhibited virulence factor production. We have demonstrated that exogenous cyclo(Phe-Pro) activated the expression ofleuO, a LysR-family regulator that had not been previously associated withV. choleraevirulence. IncreasedleuOexpression repressedaphAtranscription, which resulted in downregulation of the ToxR regulon and attenuated CT and TCP production. The cyclo(Phe-Pro)-dependent induction ofleuOexpression was found to be dependent upon the virulence regulator ToxR. Cyclo(Phe-Pro) did not affecttoxRtranscription or ToxR protein levels but appeared to enhance the ToxR-dependent transcription ofleuO. These results have identifiedleuOas a new component of the ToxR regulon and demonstrate for the first time that ToxR is capable of downregulating virulence gene expression in response to an environmental cue.IMPORTANCEThe ToxR regulon has been a focus of cholera research for more than three decades. During this time, a model has emerged wherein ToxR functions to activate the expression ofVibrio choleraevirulence factors upon host entry.V. choleraeand other enteric bacteria produce cyclo(Phe-Pro), a cyclic dipeptide that we identified as an inhibitor ofV. choleraevirulence factor production. This finding suggested that cyclo(Phe-Pro) was a negative effector of virulence factor production and represented a molecule that could potentially be exploited for therapeutic development. In this work, we investigated the mechanism by which cyclo(Phe-Pro) inhibited virulence factor production. We found that cyclo(Phe-Pro) signaled through ToxR to activate the expression ofleuO, a new virulence regulator that functioned to repress virulence factor production. Our results have identified a new arm of the ToxR regulon and suggest that ToxR may play a broader role in pathogenesis than previously known.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Nicola Horstmann ◽  
Pranoti Sahasrabhojane ◽  
Hui Yao ◽  
Xiaoping Su ◽  
Samuel A. Shelburne

ABSTRACT Control of the virulence regulator/sensor kinase (CovRS) two-component system (TCS) serves as a model for investigating the impact of signaling pathways on the pathogenesis of Gram-positive bacteria. However, the molecular mechanisms by which CovR, an OmpR/PhoB family response regulator, controls virulence gene expression are poorly defined, partly due to the labile nature of its aspartate phosphorylation site. To better understand the regulatory effect of phosphorylated CovR, we generated the phosphorylation site mutant strain 10870-CovR-D53E, which we predicted to have a constitutive CovR phosphorylation phenotype. Interestingly, this strain showed CovR activity only for a subset of the CovR regulon, which allowed for classification of CovR-influenced genes into D53E-regulated and D53E-nonregulated groups. Inspection of the promoter sequences of genes belonging to each group revealed distinct promoter architectures with respect to the location and number of putative CovR-binding sites. Electrophoretic mobility shift analysis demonstrated that recombinant CovR-D53E protein retains its ability to bind promoter DNA from both CovR-D53E-regulated and -nonregulated groups, implying that factors other than mere DNA binding are crucial for gene regulation. In fact, we found that CovR-D53E is incapable of dimerization, a process thought to be critical to OmpR/PhoB family regulator function. Thus, our global analysis of CovR-D53E indicates dimerization-dependent and dimerization-independent modes of CovR-mediated repression, thereby establishing distinct mechanisms by which this critical regulator coordinates virulence gene expression. IMPORTANCE Streptococcus pyogenes causes a wide variety of diseases, ranging from superficial skin and throat infections to life-threatening invasive infections. To establish these various disease manifestations, Streptococcus pyogenes requires tightly coordinated production of its virulence factor repertoire. Here, the response regulator CovR plays a crucial role. As an OmpR/PhoB family member, CovR is activated by phosphorylation on a conserved aspartate residue, leading to protein dimerization and subsequent binding to operator sites. Our transcriptome analysis using the monomeric phosphorylation mimic mutant CovR-D53E broadens this general notion by revealing dimerization-independent repression of a subset of CovR-regulated genes. Combined with promoter analyses, these data suggest distinct mechanisms of CovR transcriptional control, which allow for differential expression of virulence genes in response to environmental cues.


2017 ◽  
Vol 199 (7) ◽  
Author(s):  
Gabriela Kovacikova ◽  
Wei Lin ◽  
Ronald K. Taylor ◽  
Karen Skorupski

ABSTRACT FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms. IMPORTANCE Fatty acids (FAs) play important roles in membrane lipid homeostasis and energy metabolism in all organisms. In Vibrio cholerae, the causative agent of the acute intestinal disease cholera, they also influence virulence by binding into an N-terminal pocket of the master virulence regulator, ToxT, and modulating its activity. FadR is a transcription factor that coordinately controls the pathways of FA degradation and biosynthesis in enteric bacteria. This study identifies a new link between FA metabolism and virulence in the El Tor biotype by showing that FadR influences both the transcription and posttranslational regulation of the master virulence regulator ToxT by two distinct mechanisms.


2018 ◽  
Vol 200 (8) ◽  
Author(s):  
Kevin D. Mlynek ◽  
William E. Sause ◽  
Derek E. Moormeier ◽  
Marat R. Sadykov ◽  
Kurt R. Hill ◽  
...  

ABSTRACTStaphylococcus aureussubverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via theS. aureusexoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of thesaeP1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY repressessaeexpression by blocking SaeR binding. Epistasis experiments support a model that CodY also controlssaeindirectly through Agr and Rot-mediated repression of thesaeP1 promoter. We also demonstrate that CodY repression ofsaerestrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCEBacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens likeS. aureusproduce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by whichS. aureusdelays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.


Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1054-1062 ◽  
Author(s):  
Amit Vikram ◽  
Vanessa M. Ante ◽  
X. Renee Bina ◽  
Qin Zhu ◽  
Xinyu Liu ◽  
...  

Vibrio cholerae has been shown to produce a cyclic dipeptide, cyclo(phenylalanine–proline) (cFP), that functions to repress virulence factor production. The objective of this study was to determine if heterologous cyclic dipeptides could repress V. cholerae virulence factor production. To that end, three synthetic cyclic dipeptides that differed in their side chains from cFP were assayed for virulence inhibitory activity in V. cholerae. The results revealed that cyclo(valine–valine) (cVV) inhibited virulence factor production by a ToxR-dependent process that resulted in the repression of the virulence regulator aphA. cVV-dependent repression of aphA was found to be independent of known aphA regulatory genes. The results demonstrated that V. cholerae was able to respond to exogenous cyclic dipeptides and implicated the hydrophobic amino acid side chains on both arms of the cyclo dipeptide scaffold as structural requirements for inhibitory activity. The results further suggest that cyclic dipeptides have potential as therapeutics for cholera treatment.


mSystems ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Amy Platenkamp ◽  
Jay L. Mellies

ABSTRACT Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression, and they found variation among individual isolates. Archetypal pathogenic bacterial strains are often used to elucidate regulatory networks of an entire pathovar, which encompasses multiple lineages and phylogroups. With enteropathogenic Escherichia coli (EPEC) as a model system, Hazen and colleagues (mSystems 6:e00024-17, 2017, https://doi.org/10.1128/mSystems.00024-17 ) used 9 isolates representing 8 lineages and 3 phylogroups to find that isolates with similar genomic sequences exhibit similarities in global transcriptomes under conditions of growth in medium that induces virulence gene expression. They also found variation among individual isolates. Their work illustrates the importance of moving beyond observing regulatory phenomena of a limited number of regulons in a few archetypal strains, with the possibility of correlating clinical symptoms to key transcriptional pathways across lineages and phylogroups.


2018 ◽  
Vol 115 (38) ◽  
pp. E8968-E8976 ◽  
Author(s):  
Alexander A. Crofts ◽  
Simone M. Giovanetti ◽  
Erica J. Rubin ◽  
Frédéric M. Poly ◽  
Ramiro L. Gutiérrez ◽  
...  

EnterotoxigenicEscherichia coli(ETEC) is a global diarrheal pathogen that utilizes adhesins and secreted enterotoxins to cause disease in mammalian hosts. Decades of research on virulence factor regulation in ETEC has revealed a variety of environmental factors that influence gene expression, including bile, pH, bicarbonate, osmolarity, and glucose. However, other hallmarks of the intestinal tract, such as low oxygen availability, have not been examined. Further, determining how ETEC integrates these signals in the complex host environment is challenging. To address this, we characterized ETEC’s response to the human host using samples from a controlled human infection model. We found ETEC senses environmental oxygen to globally influence virulence factor expression via the oxygen-sensitive transcriptional regulator fumarate and nitrate reduction (FNR) regulator. In vitro anaerobic growth replicates the in vivo virulence factor expression profile, and deletion offnrin ETEC strain H10407 results in a significant increase in expression of all classical virulence factors, including the colonization factor antigen I (CFA/I) adhesin operon and both heat-stable and heat-labile enterotoxins. These data depict a model of ETEC infection where FNR activity can globally influence virulence gene expression, and therefore proximity to the oxygenated zone bordering intestinal epithelial cells likely influences ETEC virulence gene expression in vivo. Outside of the host, ETEC biofilms are associated with seasonal ETEC epidemics, and we find FNR is a regulator of biofilm production. Together these data suggest FNR-dependent oxygen sensing in ETEC has implications for human infection inside and outside of the host.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Aman Kumar ◽  
Vanessa Sperandio

ABSTRACTMicrobial establishment within the gastrointestinal (GI) tract requires surveillance of the gut biogeography. The gut microbiota coordinates behaviors by sensing host- or microbiota-derived signals. Here we show for the first time that microbiota-derived indole is highly prevalent in the lumen compared to the intestinal tissue. This difference in indole concentration plays a key role in modulating virulence gene expression of the enteric pathogens enterohemorrhagicEscherichia coli(EHEC) andCitrobacter rodentium. Indole decreases expression of genes within the locus of enterocyte effacement (LEE) pathogenicity island, which is essential for these pathogens to form attaching and effacing (AE) lesions on enterocytes. We synthetically altered the concentration of indole in the GI tracts of mice by employing mice treated with antibiotics to deplete the microbiota and reconstituted with indole-producing commensalBacteroides thetaiotaomicron(B. theta) or aB. thetaΔtnaAmutant (does not produce indole) or by engineering an indole-producingC. rodentiumstrain. This allowed us to assess the role of self-produced versus microbiota-produced indole, and the results show that decreased indole concentrations promote bacterial pathogenesis, while increased levels of indole decrease bacterial virulence gene expression. Moreover, we identified the bacterial membrane-bound histidine sensor kinase (HK) CpxA as an indole sensor. Enteric pathogens sense a gradient of indole concentrations in the gut to probe different niches and successfully establish an infection.IMPORTANCEPathogens sense and respond to several small molecules within the GI tract to modulate expression of their virulence repertoire. Indole is a signaling molecule produced by the gut microbiota. Here we show that indole concentrations are higher in the lumen, where the microbiota is present, than in the intestinal tissue. The enteric pathogens EHEC andC. rodentiumsense indole to downregulate expression of their virulence genes, as a read-out of the luminal compartment. We also identified the bacterial membrane-bound HK CpxA as an indole sensor. This regulation ensures that EHEC andC. rodentiumexpress their virulence genes only at the epithelial lining, which is the niche they colonize.


2019 ◽  
Vol 87 (3) ◽  
Author(s):  
Mondraya F. Howard ◽  
X. Renee Bina ◽  
James E. Bina

ABSTRACTIndole is a degradation product of tryptophan that functions as a signaling molecule in many bacteria. This includesVibrio cholerae, where indole was shown to regulate biofilm and type VI secretion in nontoxigenic environmental isolates. Indole is also produced by toxigenicV. choleraestrains in the human intestine, but its significance in the host is unknown. We investigated the effects of indole on toxigenicV. choleraeO1 El Tor during growth under virulence inducing conditions. The indole transcriptome was defined by RNA sequencing and showed widespread changes in the expression of genes involved in metabolism, biofilm production, and virulence factor production. In contrast, genes involved in type VI secretion were not affected by indole. We subsequently found that indole repressed genes involved inV. choleraepathogenesis, including the ToxR virulence regulon. Consistent with this, indole inhibited cholera toxin and toxin-coregulated pilus production in a dose-dependent manner. The effects of indole on virulence factor production and biofilm were linked to ToxR and the ToxR-dependent regulator LeuO. The expression ofleuOwas increased by exogenous indole and linked to repression of the ToxR virulence regulon. This process was dependent on the ToxR periplasmic domain, suggesting that indole was a ToxR agonist. This conclusion was further supported by results showing that the ToxR periplasmic domain contributed to indole-mediated increased biofilm production. Collectively, our results suggest that indole may be a niche-specific cue that can function as a ToxR agonist to modulate virulence gene expression and biofilm production inV. cholerae.


Sign in / Sign up

Export Citation Format

Share Document